Skip to main content

Wildland Fire

  • Chapter
  • First Online:
Handbook of Fire and the Environment

Abstract

Wildfires, and their associated management activities, can have complex social, economic, and environmental impacts. This chapter highlights some of the key impacts of wildfires in six sections. The first section about community focuses on relationships between recent destructive wildfires around the globe and losses to life and property. It also presents the main mechanisms of house loss in the Wildland-Urban Interface. Following that, a section about biodiversity impacts describes the major effects of wildfires and associated fire regimes on plants and animals, underlining both negative and positive effects. Then, the focus shifts to soil and water with a section that highlights how wildfires can have serious implications for downstream water quality and yield, posing a threat to water security for the people and aquatic wildlife. This is followed by a section about air quality, which describes the effect of wildfires on visibility, human health and their contribution to climate change. The next section highlights the role of dynamic fire behaviours that lead to the most severe impacts, describing the fire behaviours themselves and their frequency of occurrence. The chapter closes with a case study describing the extreme impacts of the 2019/2020 fire season in south-eastern Australia on people and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, Van Der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324(5926):481–484. https://doi.org/10.1126/science.1163886

    Article  Google Scholar 

  2. Bond WJ, Keeley JE (2005) Fire as a global herbivore: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394. http://www.sciencedirect.com/science/article/pii/S0169534705001321

    Article  Google Scholar 

  3. Blanchi R, Leonard J, Haynes K, Opie K, James M, Oliveira FD (2014) Environmental circumstances surrounding bushfire fatalities in Australia 1901-2011. Environ Sci Policy 37:192–203. https://doi.org/10.1016/j.envsci.2013.09.013

    Article  Google Scholar 

  4. Molina-Terrén DM, Xanthopoulos G, Diakakis M, Ribeiro L, Caballero D, Delogu GM, Viegas DX, Silva CA, Cardil A (2019) Analysis of forest fire fatalities in Southern Europe: Spain, Portugal, Greece and Sardinia (Italy). Int J Wildland Fire 28(2):85–98. https://doi.org/10.1071/WF18004

    Article  Google Scholar 

  5. Nyman P, Sheridan GJ, Smith HG, Lane PNJ (2011) Evidence of debris flow occurrence after wildfire in upland catchments of south-East Australia. Geomorphology 125(3):383–401. https://doi.org/10.1016/j.geomorph.2010.10.016

    Article  Google Scholar 

  6. Cruz MG, Sullivan AL, Gould JS, Sims NC, Bannister AJ, Hollis JJ, Hurley RJ (2012) Anatomy of a catastrophic wildfire: the black Saturday Kilmore east fire in Victoria, Australia. For Ecol Manag 284:269–285. https://doi.org/10.1016/j.foreco.2012.02.035

    Article  Google Scholar 

  7. McRae RHD, Sharples JJ, Wilkes SR, Walker A (2013) An Australian pyro-tornadogenesis event. Nat Hazards 65(3):1801–1811. https://doi.org/10.1007/s11069-012-0443-7

    Article  Google Scholar 

  8. Filkov AI, Duff TJ, Penman TD (2020) Frequency of dynamic fire behaviours in Australian Forest environments. Fire 3(1):1–19. https://doi.org/10.3390/fire3010001

    Article  Google Scholar 

  9. Hammer RB, Stewart SI, Radeloff VC (2009) Demographic trends, the wildland-urban interface, and wildfire management. Soc Nat Resour 22(8):777–782. https://doi.org/10.1080/08941920802714042

    Article  Google Scholar 

  10. Kramer HA, Mockrin MH, Alexandre PM, Radeloff VC (2019) High wildfire damage in interface communities in California. Int J Wildland Fire 28(9):641–650. https://doi.org/10.1071/WF18108

    Article  Google Scholar 

  11. Keith D (1996) Fire-driven extinction of plant populations: a synthesis of theory and review of evidence from Australian vegetation. Proc Linnean Soc NSW 1996(116):37–78. https://www.scopus.com/inward/record.uri?eid=2-s2.0-3142563013&partnerID=40&md5=dba9a76a246df04b0be73671cb011963

    Google Scholar 

  12. Ryan KC (2002) Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fennica 36(1):13–39

    Article  Google Scholar 

  13. Miller RG, Tangney R, Enright NJ, Fontaine JB, Merritt DJ, Ooi MKJ, Ruthrof KX, Miller BP (2019) Mechanisms of fire seasonality effects on plant populations. Trends Ecol Evol 34(12):1104–1117. https://doi.org/10.1016/j.tree.2019.07.009

    Article  Google Scholar 

  14. Flannigan MD, Krawchuk MA, De Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. Int J Wildland Fire 18(5):483–507. https://doi.org/10.1071/WF08187

    Article  Google Scholar 

  15. Bradstock R, Penman T, Boer M, Price O, Clarke H (2014) Divergent responses of fire to recent warming and drying across South-Eastern Australia. Glob Chang Biol 20(5):1412–1428. https://doi.org/10.1111/gcb.12449

    Article  Google Scholar 

  16. Jolly WM, Cochrane MA, Freeborn PH, Holden ZA, Brown TJ, Williamson GJ, Bowman DMJS (2015) Climate-induced variations in global wildfire danger from 1979 to 2013. Nat Commun 6. https://doi.org/10.1038/ncomms8537

  17. Sharples JJ, Cary GJ, Fox-Hughes P, Mooney S, Evans JP, Fletcher MS, Fromm M, Grierson PF, McRae R, Baker P (2016) Natural hazards in Australia: extreme bushfire. Clim Chang 139(1):85–99. https://doi.org/10.1007/s10584-016-1811-1

    Article  Google Scholar 

  18. Nolan RH, Boer MM, Collins L, Resco de Dios V, Clarke H, Jenkins M, Kenny B, Bradstock RA (2020) Causes and consequences of eastern Australia’s 2019–20 season of mega-fires. Glob Chang Biol 26(3):1039–1041. https://doi.org/10.1111/gcb.14987

    Article  Google Scholar 

  19. Davis EJ, Moseley C, Nielsen-Pincus M, Jakes PJ (2014) The community economic impacts of large wildfires: a case study from Trinity County, California. Soc Nat Res 27(9):983–993. https://doi.org/10.1080/08941920.2014.905812

    Article  Google Scholar 

  20. Papadatou D, Giannopoulou I, Bitsakou P, Bellali T, Talias MA, Tselepi K (2012) Adolescents’ reactions after a wildfire disaster in Greece. J Trauma Stress 25(1):57–63. https://doi.org/10.1002/jts.21656

    Article  Google Scholar 

  21. Kulig JC, Dabravolskaj J (2020) The psychosocial impacts of wildland fires on children, adolescents and family functioning: a scoping review. Int J Wildland Fire 29(2):93–103. https://doi.org/10.1071/WF18063

    Article  Google Scholar 

  22. Paveglio TB, Brenkert-Smith H, Hall T, Smith AMS (2015) Understanding social impact from wildfires: advancing means for assessment. Int J Wildland Fire 24(2):212–224. https://doi.org/10.1071/WF14091

    Article  Google Scholar 

  23. Filkov A, Ngo T, Matthews S, Telfer S, Penman T (2020) Numbers behind Australia’s catastrophic 2019/20 bushfire season. J Saf Sci Resil:1–23 (pending publishing)

    Google Scholar 

  24. Brown T, Leach S, Wachter B, Gardunio B (2020) The extreme 2018 Northern California fire season. Bull Am Meteorol Soc 101(1):S1–S4. https://doi.org/10.1175/bams-d-19-0275.1

    Article  Google Scholar 

  25. Lagouvardos K, Kotroni V, Giannaros TM, Dafis S (2019) Meteorological conditions conducive to the rapid spread of the deadly wildfire in Eastern Attica, Greece. Bull Am Meteorol Soc 100(11):2137–2145. https://doi.org/10.1175/bams-d-18-0231.1

    Article  Google Scholar 

  26. Addison P, Oommen T (2020) Post-fire debris flow modeling analyses: case study of the post-Thomas fire event in California. Nat Hazards 100(1):329–343. https://doi.org/10.1007/s11069-019-03814-x

    Article  Google Scholar 

  27. Mamuji AA, Rozdilsky JL (2019) Wildfire as an increasingly common natural disaster facing Canada: understanding the 2016 Fort McMurray wildfire. Nat Hazards 98(1):163–180. https://doi.org/10.1007/s11069-018-3488-4

    Article  Google Scholar 

  28. Government of British Columbia (2020) Wildfire Causes - Province of British Columbia. https://www2.gov.bc.ca/gov/content/governments/organizational-structure/ministries-organizations. Accessed 20 Mar 2020

  29. Turco M, Jerez S, Augusto S, Tarín-Carrasco P, Ratola N, Jiménez-Guerrero P, Trigo RM (2019) Climate drivers of the 2017 devastating fires in Portugal. Sci Rep 9(1). https://doi.org/10.1038/s41598-019-50281-2

  30. Teodoro AC, Amaral A (2017) Evaluation of forest fires in Portugal Mainland during 2016 summer considering different satellite datasets. Paper presented at the Proceedings of SPIE - The International Society for Optical Engineering. https://doi.org/10.1117/12.2278262

  31. Liesowska A (2015) Fire rages on as death toll from two blazes reaches 33. http://siberiantimes.com/ecology/casestudy/news/n0187-fire-rages-on-as-death-toll-from-two-blazes-reaches-33/. Accessed 20 Mar 2020

  32. Prelgauskas E (2016) Helping fire-impacted families in rebuilding: toward enhanced community resilience outcomes. Australian J Emerg Manage 31(4):56–61. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84995665288&partnerID=40&md5=25ec71f20bcedf4c971230b5b429ce5d

    Google Scholar 

  33. October 2013: A tribute (2014) Bush Fire Bulletin, vol 36. NSW Rural Fire Service. http://www.rfs.nsw.gov.au/__data/assets/pdf_file/0020/25922/Bush-Fire-Bulletin-2014-Vol-36-No-2.pdf

  34. Wilkinson C, Eriksen C, Penman T (2016) Into the firing line: civilian ingress during the 2013 “red October” bushfires, Australia. Nat Hazards 80(1):521–538. https://doi.org/10.1007/s11069-015-1982-5

    Article  Google Scholar 

  35. BBC News (2012) Wildfire sweeps across Greek island of Chios. https://www.bbc.com/news/world-europe-19323968. Accessed 20 Mar 2020

  36. Myhre D, Bajaj S, Fehr L, Kapusta M, Woodley K, Nagji A (2017) Precepting at the time of a natural disaster. Clin Teacher 14(2):104–107. https://doi.org/10.1111/tct.12523

    Article  Google Scholar 

  37. Kirsch KR, Feldt BA, Zane DF, Haywood T, Jones RW, Horney JA (2016) Longitudinal community assessment for public health emergency response to wildfire, Bastrop County, Texas. Health Security 14(2):93–104. https://doi.org/10.1089/hs.2015.0060

    Article  Google Scholar 

  38. Gilbert N (2010) Russia counts environmental cost of wildfires. Nature. https://doi.org/10.1038/news.2010.404

  39. Konovalov IB, Beekmann M, Kuznetsova IN, Yurova A, Zvyagintsev AM (2011) Atmospheric impacts of the 2010 Russian wildfires: integrating modelling and measurements of an extreme air pollution episode in the Moscow region. Atmos Chem Phys 11(19):10031–10056. https://doi.org/10.5194/acp-11-10031-2011

    Article  Google Scholar 

  40. Espinoza Espinoza SE, Vivaceta De la Fuente AE, Machuca Contreras CA (2017) Valparaiso’s 2014 fire: evaluation of environmental and epidemiological risk factors during the emergency through a crowdsourcing tool. Disaster Med Public Health Prep 11(2):239–243. https://doi.org/10.1017/dmp.2016.117

    Article  Google Scholar 

  41. Pliscoff P, Folchi M, Aliste E, Cea D, Simonetti JA (2020) Chile mega-fire 2017: an analysis of social representation of forest plantation territory. Appl Geogr 119. https://doi.org/10.1016/j.apgeog.2020.102226

  42. Vargas-Cuentas NI, Roman-Gonzalez A (2018) Analysis of the environmental impact of the Sama forest fire in Tarija Bolivia. In: Proceedings of the International Astronautical Congress. IAC 2018, Code 147415, Bremen

    Google Scholar 

  43. Kahn B (2017) Wildfire burns across (formerly) icy Greenland. Climate Central. https://www.scientificamerican.com/article/wildfire-burns-across-formerly-icy-greenland/. Accessed 20 Mar 2020

  44. CTIF (2019) Scotland, Norway and Sweden already severely effected by forest fires due to the dry weather in the north. International Association of Fire and Rescue Services. https://www.ctif.org/news/scotland-norway-and-sweden-already-severely-effected-forest-fires-due-dry-weather-north. Accessed 11 June 2020

  45. Freedman A (2019) Greenland wildfire part of unusual spike in Arctic blazes this summer. https://www.washingtonpost.com/weather/2019/07/18/greenland-wildfire-part-unusual-spike-arctic-blazes-this-summer/. Accessed 20 Mar 2020

  46. Johansson J, Lidskog R (2020) Constructing and justifying risk and accountability after extreme events: public administration and stakeholders’ responses to a wildfire disaster. J Environ Pol Plann 22(3):353–365. https://doi.org/10.1080/1523908X.2020.1740656

    Article  Google Scholar 

  47. NWCG (2017) Glossary of wildland fire terminology. National Wildfire Coordinating Group

    Google Scholar 

  48. Gill AM, Stephens SL (2009) Scientific and social challenges for the management of fire-prone wildland-urban interfaces. Environ Res Lett 4(3). https://doi.org/10.1088/1748-9326/4/3/034014

  49. Blanchi R, Leonard J, Haynes K, Opie K, James M, Kilinc M, De Oliveira FD, Van den Honert R (2012) Life and house loss database description and analysis. CSIRO. https://doi.org/10.4225/08/584af3d322e91

    Book  Google Scholar 

  50. Radeloff VC, Helmers DP, Kramer HA, Mockrin MH, Alexandre PM, Bar-Massada A, Butsic V, Hawbaker TJ, Martinuzzi S, Syphard AD, Stewart SI (2018) Rapid growth of the US wildland-urban interface raises wildfire risk. Proc Natl Acad Sci 115(13):3314. https://doi.org/10.1073/pnas.1718850115

    Article  Google Scholar 

  51. Halofsky JE, Peterson DL, Harvey BJ (2020) Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol 16(1):4. https://doi.org/10.1186/s42408-019-0062-8

    Article  Google Scholar 

  52. Cohen JD (2000) Preventing disaster: home ignitability in the wildland-urban interface. J For 98(3):15–21. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0033932805&partnerID=40&md5=9bb8f40da796c48ff517c1a7f88ab65b

    Google Scholar 

  53. Blanchi R, Lucas C, Leonard J, Finkele K (2010) Meteorological conditions and wildfire-related houseloss in Australia. Int J Wildland Fire 19:914–926. https://doi.org/10.1071/WF08175

    Article  Google Scholar 

  54. Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildland Fire 19:818–843. https://doi.org/10.1071/WF07119

    Article  Google Scholar 

  55. El Houssami M, Mueller E, Filkov A, Thomas JC, Skowronski N, Gallagher MR, Clark K, Kremens R, Simeoni A (2016) Experimental procedures characterising firebrand generation in wildland fires. Fire Technol 52(3). https://doi.org/10.1007/s10694-015-0492-z

  56. Filkov A, Prohanov S, Mueller E, Kasymov D, Martynov P, Houssami ME, Thomas J, Skowronski N, Butler B, Gallagher M, Clark K, Mell W, Kremens R, Hadden RM, Simeoni A (2017) Investigation of firebrand production during prescribed fires conducted in a pine forest. Proc Combust Inst 36. https://doi.org/10.1016/j.proci.2016.06.125

  57. Cohen JD (2000) What is the wildland fire threat to homes?

    Google Scholar 

  58. Manzello SL, Foote EID (2014) Characterizing firebrand exposure from wildland-Urban Interface (WUI) fires: results from the 2007 angora fire. Fire Technol 50(1):105–124. https://doi.org/10.1007/s10694-012-0295-4

    Article  Google Scholar 

  59. He T, Lamont BB, Pausas JG (2019) Fire as a key driver of Earth’s biodiversity. Biol Rev 94(6):1983–2010. https://doi.org/10.1111/brv.12544

    Article  Google Scholar 

  60. Kelly LT, Brotons L (2017) Using fire to promote biodiversity. Science 355(6331):1264–1265. https://doi.org/10.1126/science.aam7672

    Article  Google Scholar 

  61. Gill AM, Groves RH, Noble IR (1981) Fire and the Australian biota. Australian Academy of Science, Canberra

    Google Scholar 

  62. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2011) Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press

    Book  Google Scholar 

  63. Williams RJ, Gill AM, Bradstock RA (2012) Flammable Australia: fire regimes, biodiversity and ecosystems in a changing world. CSIRO Publishing

    Google Scholar 

  64. Yang J, Tian H, Tao B, Ren W, Kush J, Liu Y, Wang Y (2014) Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: reconstructing global fire history for the 20th and early 21st centuries. J Geophys Res Biogeo 119(3):249–263. https://doi.org/10.1002/2013jg002532

    Article  Google Scholar 

  65. Bond WJ, Van Wilgen BW (2012) Fire and plants, vol 14. Springer

    Google Scholar 

  66. Pausas JG (2019) Generalized fire response strategies in plants and animals. Oikos 128(2):147–153. https://doi.org/10.1111/oik.05907

    Article  Google Scholar 

  67. Gill AM, Allan G (2008) Large fires, fire effects and the fire-regime concept. Int J Wildland Fire 17(6):688–695. https://doi.org/10.1071/WF07145

    Article  Google Scholar 

  68. Lamont BB, Pausas JG, He T, Witkowski ETF, Hanley ME (2020) Fire as a selective agent for both Serotiny and Nonserotiny over space and time. Critical Rev Plant Sci:1–33. https://doi.org/10.1080/07352689.2020.1768465

  69. Gill AM (1975) Fire and the Australian flora: a review. Aust For 38(1):4–25

    Article  Google Scholar 

  70. Gill AM, Catling P (2002) Fire regimes and biodiversity of forested landscapes southern Australia. In: Bradstock RA, Williams JE, Gill AM (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, pp 351–372

    Google Scholar 

  71. Bowman DMJS, Murphy BP, Neyland DLJ, Williamson GJ, Prior LD (2014) Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests. Glob Chang Biol 20(3):1008–1015. https://doi.org/10.1111/gcb.12433

    Article  Google Scholar 

  72. Turner MG, Braziunas KH, Hansen WD, Harvey BJ (2019) Short-interval severe fire erodes the resilience of subalpine lodgepole pine forests. Proc Natl Acad Sci 116(23):11319–11328. https://doi.org/10.1073/pnas.1902841116

    Article  Google Scholar 

  73. Enright NJ, Fontaine JB, Bowman DM, Bradstock RA, Williams RJ (2015) Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front Ecol Environ 13(5):265–272. https://doi.org/10.1890/140231

    Article  Google Scholar 

  74. Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack MC, Meentemeyer RK, Metz MR, Perry GL, Schoennagel T, Turner MG (2016) Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ 14(7):369–378. https://doi.org/10.1002/fee.1311

    Article  Google Scholar 

  75. Keeley JE, Fotheringham CJ, Baer-Keeley M (2005) Determinants of postfire recovery and succession in Mediterranean-climate shrublands of California. Ecol Appl 15:1515–1534

    Article  Google Scholar 

  76. Stevens-Rumann CS, Kemp KB, Higuera PE, Harvey BJ, Rother MT, Donato DC, Morgan P, Veblen TT (2018) Evidence for declining forest resilience to wildfires under climate change. Ecol Lett 21(2):243–252. https://doi.org/10.1111/ele.12889

    Article  Google Scholar 

  77. van Mantgem PJ, Nesmith JCB, Keifer M, Knapp EE, Flint A, Flint L (2013) Climatic stress increases forest fire severity across the western United States. Ecol Lett 16(9):1151–1156. https://doi.org/10.1111/ele.12151

    Article  Google Scholar 

  78. Bonilla-Aldana DK, Suárez JA, Franco-Paredes C, Vilcarromero S, Mattar S, Gómez-Marín JE, Villamil-Gómez WE, Ruíz-Sáenz J, Cardona-Ospina JA, Idarraga-Bedoya SE, García-Bustos JJ, Jimenez-Posada EV, Rodríguez-Morales AJ (2019) Brazil burning! What is the potential impact of the Amazon wildfires on vector-borne and zoonotic emerging diseases? – a statement from an international experts meeting. Travel Med Infect Dis 31. https://doi.org/10.1016/j.tmaid.2019.101474

  79. Evangeliou N, Kylling A, Eckhardt S, Myroniuk V, Stebel K, Paugam R, Zibtsev S, Stohl A (2019) Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions. Atmos Chem Phys 19(2):1393–1411. https://doi.org/10.5194/acp-19-1393-2019

    Article  Google Scholar 

  80. Worth JRP, Sakaguchi S, Rann KD, Bowman CJW, Ito M, Jordan GJ, Bowman DMJS (2016) Gondwanan conifer clones imperilled by bushfire. Sci Rep 6(1):33930. https://doi.org/10.1038/srep33930

    Article  Google Scholar 

  81. D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu Rev Ecol Syst 23(1):63–87. https://doi.org/10.1146/annurev.es.23.110192.000431

    Article  Google Scholar 

  82. Setterfield SA, Rossiter-Rachor NA, Douglas MM, Wainger L, Petty AM, Barrow P, Shepherd IJ, Ferdinands KB (2013) Adding fuel to the fire: the impacts of non-native grass invasion on fire Management at a Regional Scale. PLoS One 8(5). https://doi.org/10.1371/journal.pone.0059144

  83. Rahlao SJ, Milton SJ, Esler KJ, Van Wilgen BW, Barnard P (2009) Effects of invasion of fire-free arid shrublands by a fire-promoting invasive alien grass (Pennisetum setaceum) in South Africa. Austral Ecol 34(8):920–928. https://doi.org/10.1111/j.1442-9993.2009.02000.x

    Article  Google Scholar 

  84. Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge

    Google Scholar 

  85. Whelan RJ, Rodgerson L, Dickman CR, Sutherland EF (2002) Critical life cycles of plants and animals: developing a process based understanding of population changes in fire-prone landscapes. In: Bradstock RA, Williams JE, Gill AM (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, pp 94–124

    Google Scholar 

  86. Nimmo DG, Avitabile S, Banks SC, Bliege Bird R, Callister K, Clarke MF, Dickman CR, Doherty TS, Driscoll DA, Greenville AC, Haslem A, Kelly LT, Kenny SA, Lahoz-Monfort JJ, Lee C, Leonard S, Moore H, Newsome TM, Parr CL, Ritchie EG, Schneider K, Turner JM, Watson S, Westbrooke M, Wouters M, White M, Bennett AF (2019) Animal movements in fire-prone landscapes. Biol Rev 94(3):981–998. https://doi.org/10.1111/brv.12486

    Article  Google Scholar 

  87. Engstrom RT (2010) First-order fire effects on animals: review and recommendations. Fire Ecol 6(1):115–130. https://doi.org/10.4996/fireecology.0601115

    Article  Google Scholar 

  88. Friend GR (1993) Impact of fire on small vertebrates in mallee woodlands and heathlands of temperate Australia: a review. Biol Conserv 65(2):99–114. http://www.sciencedirect.com/science/article/B6V5X-48XKCWB-1BP/2/fbd84c7efeeb347388cd36cba7dc49c2

    Article  Google Scholar 

  89. Robinson NM, Leonard SWJ, Ritchie EG, Bassett M, Chia EK, Buckingham S, Gibb H, Bennett AF, Clarke MF (2013) Refuges for fauna in fire-prone landscapes: their ecological function and importance. J Appl Ecol 50(6):1321–1329. https://doi.org/10.1111/1365-2664.12153

    Article  Google Scholar 

  90. Leonard SWJ, Bennett AF, Clarke MF (2014) Determinants of the occurrence of unburnt forest patches: potential biotic refuges within a large, intense wildfire in South-Eastern Australia. For Ecol Manag 314:85–93. https://doi.org/10.1016/j.foreco.2013.11.036

    Article  Google Scholar 

  91. Collins L, Bennett AF, Leonard SWJ, Penman TD (2019) Wildfire refugia in forests: severe fire weather and drought mute the influence of topography and fuel age. Glob Chang Biol 25(11):3829–3843. https://doi.org/10.1111/gcb.14735

    Article  Google Scholar 

  92. Romme WH, Boyce MS, Gresswell R, Merrill EH, Minshall GW, Whitlock C, Turner MG (2011) Twenty years after the 1988 Yellowstone fires: lessons about disturbance and ecosystems. Ecosystems 14(7):1196–1215. www.jstor.org/stable/41505943

    Article  Google Scholar 

  93. Geary WL, Doherty TS, Nimmo DG, Tulloch AI, Ritchie EG (2019) Predator responses to fire: a global systematic review and meta-analysis. J Anim Ecol

    Google Scholar 

  94. Hradsky BA (2020) Conserving Australia’s threatened native mammals in predator-invaded, fire-prone landscapes. Wildl Res 47(1):1–15. https://doi.org/10.1071/WR19027

    Article  Google Scholar 

  95. Sitters H, Di Stefano J (2020) Integrating functional connectivity and fire management for better conservation outcomes. Conserv Biol 34(3):550–560. https://doi.org/10.1111/cobi.13446

    Article  Google Scholar 

  96. Fox BJ (1982) Fire and mammalian secondary succession in an Australian coastal heath. Ecology 63(5):1332–1341. http://www.jstor.org/stable/1938861

    Article  Google Scholar 

  97. Skatter HG, Charlebois ML, Eftestøl S, Tsegaye D, Colman JE, Kansas JL, Flydal K, Balicki B (2017) Living in a burned landscape: woodland caribou (Rangifer tarandus caribou) use of postfire residual patches for calving in a high fire – low anthropogenic boreal shield ecozone. Can J Zool 95(12):975–984. https://doi.org/10.1139/cjz-2016-0307

    Article  Google Scholar 

  98. Swanson ME, Franklin JF, Beschta RL, Crisafulli CM, DellaSala DA, Hutto RL, Lindenmayer DB, Swanson FJ (2011) The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front Ecol Environ 9(2):117–125. www.jstor.org/stable/41149700

    Article  Google Scholar 

  99. Haslem A, Kelly LT, Nimmo DG, Watson SJ, Kenny SA, Taylor RS, Avitabile SC, Callister KE, Spence-Bailey LM, Clarke MF, Bennett AF (2011) Habitat or fuel? Implications of long-term, post-fire dynamics for the development of key resources for fauna and fire. J Appl Ecol 48(1):247–256. https://doi.org/10.1111/j.1365-2664.2010.01906.x

    Article  Google Scholar 

  100. Lindenmayer DB, Blanchard W, MacGregor C, Barton P, Banks Sam C, Crane M, Michael D, Okada S, Berry L, Florance D, Gill M (2016) Temporal trends in mammal responses to fire reveals the complex effects of fire regime attributes. Ecol Appl 26(2):557–573. https://doi.org/10.1890/15-0575

    Article  Google Scholar 

  101. Recher HF, Lunney D, Matthews A (2009) Small mammal populations in a eucalypt forest affected by fire and drought. I. Long-term patterns in an era of climate change. Wildl Res 36(2):143–158. https://doi.org/10.1071/WR08086

    Article  Google Scholar 

  102. Crowther MS, Tulloch AI, Letnic M, Greenville AC, Dickman CR (2018) Interactions between wildfire and drought drive population responses of mammals in coastal woodlands. J Mammal 99(2):416–427. https://doi.org/10.1093/jmammal/gyy003

    Article  Google Scholar 

  103. Martin DA (2016) At the nexus of fire, water and society. Philos Trans R Soc B-Biol Sci 371(1696):9. https://doi.org/10.1098/rstb.2015.0172

    Article  Google Scholar 

  104. Shakesby RA, Doerr SH (2006) Wildfire as a hydrological and geomorphological agent. Earth Sci Rev 74(3–4):269–307. <Go to ISI>://000236213300004

    Article  Google Scholar 

  105. Smith HG, Sheridan GJ, Lane PNJ, Nyman P, Haydon S (2011) Wildfire effects on water quality in forest catchments: a review with implications for water supply. J Hydrol 396(1–2):170–192. https://doi.org/10.1016/j.jhydrol.2010.10.043

    Article  Google Scholar 

  106. Moody JA, Shakesby RA, Robichaud PR, Cannon SH, Martin DA (2013) Current research issues related to post-wildfire runoff and erosion processes. Earth Sci Rev 122:10–37. https://doi.org/10.1016/j.earscirev.2013.03.004

    Article  Google Scholar 

  107. Eamus D, Colvin C, Cook P, Hatton T (2006) Ecohydrology : vegetation function, water and resource management. CSIRO Publishing, Melbourne

    Book  Google Scholar 

  108. Walsh RPD, Voigt PJ (1977) Vegetation litter - underestimated variable in hydrology and geomorphology. J Biogeogr 4(3):253–274. https://doi.org/10.2307/3038060

    Article  Google Scholar 

  109. Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol Rev 81(1):1–31. https://doi.org/10.1017/s1464793105006846

    Article  Google Scholar 

  110. Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71

    Article  Google Scholar 

  111. Mataix-Solera J, Cerda A, Arcenegui V, Jordan A, Zavala LM (2011) Fire effects on soil aggregation: a review. Earth Sci Rev 109(1-2):44–60. https://doi.org/10.1016/j.earscirev.2011.08.002

    Article  Google Scholar 

  112. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143(1):1–10

    Article  Google Scholar 

  113. Larsen IJ, MacDonald LH, Brown E, Rough D, Welsh MJ, Pietraszek JH, Libohova Z, Benavides-Solorio JD, Schaffrath K (2009) Causes of post-fire runoff and erosion: water Repellency, cover, or soil sealing? Soil Sci Soc Am J 73(4):1393–1407. https://doi.org/10.2136/sssaj2007.0432

    Article  Google Scholar 

  114. DeBano LF (2000) The role of fire and soil heating on water repellency in wildland environments: a review. J Hydrol 231:195–206. <Go to ISI>://000087736400016

    Article  Google Scholar 

  115. Doerr SH, Shakesby RA, Walsh RPD (2000) Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth Sci Rev 51(1–4):33–65. <Go to ISI>://000089433800002

    Article  Google Scholar 

  116. Doerr SH, Ferreira AJD, Walsh RPD, Shakesby RA, Leighton-Boyce G, Coelho COA (2003) Soil water repellency as a potential parameter in rainfall-runoff modelling: experimental evidence at point to catchment scales from Portugal. Hydrol Process 17(2):363–377. https://doi.org/10.1002/hyp.1129

    Article  Google Scholar 

  117. Doerr SH, Moody JA (2004) Hydrological effects of soil water repellency: on spatial and temporal uncertainties. Hydrol Process 18(4):829–832. https://doi.org/10.1002/hyp.5518

    Article  Google Scholar 

  118. Bodi MB, Martin DA, Balfour VN, Santin C, Doerr SH, Pereira P, Cerda A, Mataix-Solera J (2014) Wild land fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci Rev 130:103–127. https://doi.org/10.1016/j.earscirev.2013.12.007

    Article  Google Scholar 

  119. Vieira DCS, Fernandez C, Vega JA, Keizer JJ (2015) Does soil burn severity affect the post-fire runoff and interrill erosion response? A review based on meta-analysis of field rainfall simulation data. J Hydrol 523:452–464. https://doi.org/10.1016/j.jhydrol.2015.01.071

    Article  Google Scholar 

  120. Kampf SK, Brogan DJ, Schmeer S, MacDonald LH, Nelson PA (2016) How do geomorphic effects of rainfall vary with storm type and spatial scale in a post-fire landscape? Geomorphology 273:39–51

    Article  Google Scholar 

  121. Cannon SH, Gartner JE, Wilson RC, Bowers JC, Laber JL (2008) Storm rainfall conditions for floods and debris flows from recently burned areas in southwestern Colorado and southern California. Geomorphology 96(3-4):250–269. https://doi.org/10.1016/j.geomorph.2007.03.019

    Article  Google Scholar 

  122. Neary DG, DeBano L (2005) Part A—the soil resource: its importance, characteristics, and general responses to fire. In: Neary DG, Ryan KC, DeBano LF (eds) Wildland fire in ecosystems. Effects of fire on soil and water. General technical report RMRS-GTR-42-vol4. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden

    Chapter  Google Scholar 

  123. Keeley JE (2009) Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire 18(1):116–126. https://doi.org/10.1071/WF07049

    Article  Google Scholar 

  124. Debano LF, Rice RM, Conrad CE (1979) Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff. Research paper PSW-145. United States Department of Agriculture, Pacific South West Forest and Range Experiment Station

    Google Scholar 

  125. Cawson JG, Sheridan GJ, Smith HG, Lane PNJ (2013) Effects of fire severity and burn patchiness on hillslope-scale surface runoff, erosion and hydrologic connnectvity in a prescribed burn. For Ecol Manag 310:219–233

    Article  Google Scholar 

  126. Cawson JG, Nyman P, Smith HG, Lane PNJ, Sheridan GJ (2016) How soil temperatures during prescribed burning affect soil water repellency, infiltration and erosion. Geoderma 278:12–22

    Article  Google Scholar 

  127. Neary DG, Ryan KC, DeBano L, Landsberg JD, Brown JK (2005) Chapter 1: introduction. In: Neary DG, Ryan KC, DeBano LF (eds) Wildland fire in ecosystems. Effects of fire on soil and water. General technical report RMRS-GTR-42-vol4. United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden

    Chapter  Google Scholar 

  128. Cawson JG, Sheridan GJ, Smith HG, Lane PNJ (2012) Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: a review. Int J Wildland Fire 21:857–872

    Article  Google Scholar 

  129. Stavi I (2019) Wildfires in grasslands and Shrublands: a review of impacts on vegetation, soil, hydrology, and geomorphology. Water 11(5):20. https://doi.org/10.3390/w11051042

    Article  Google Scholar 

  130. Prosser IP, Williams L (1998) The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrol Process 12(2):251–265. <Go to ISI>://000072232100004

    Article  Google Scholar 

  131. Lane PNJ, Sheridan GJ, Noske PJ (2006) Changes in sediment loads and discharge from small mountain-catchments following wild-fire in south eastern Australia. J Hydrol 331(3–4):495–510. <Go to ISI>://000242697700011

    Article  Google Scholar 

  132. Langhans C, Smith HG, Chong DMO, Nyman P, Lane PNJ, Sheridan GJ (2016) A model for assessing water quality risk in catchments prone to wildfire. J Hydrol 534:407–426. https://doi.org/10.1016/j.jhydrol.2015.12.048

    Article  Google Scholar 

  133. Minshall GW (2003) Responses of stream benthic macroinvertebrates to fire. For Ecol Manag 178:155–161

    Article  Google Scholar 

  134. Lyon JP, O’Connor JP (2008) Smoke on the water: can riverine fish populations recover following a catastrophic fire-related sediment slug? Austral Ecol 33(6):794–776

    Article  Google Scholar 

  135. Smith HG, Cawson JG, Sheridan GJ, Lane PNJ (2011) Desktop review. Impact of bushfires on water quality. Department of Sustainability, Environment, Water, Population and Communities, Canberra

    Google Scholar 

  136. Minshall GW, Royer TV, Robinson CT (2001) Response of the Cache Creek macroinvertebrates during the first 10 years following disturbance by the 1988 Yellowstone wildfires. Can J Fish Aquat Sci 58:1077–1088

    Article  Google Scholar 

  137. Bart RR (2016) A regional estimate of postfire streamflow change in California. Water Resour Res 52(2):1465–1478. https://doi.org/10.1002/2014wr016553

    Article  Google Scholar 

  138. Wine ML, Cadol D (2016) Hydrologic effects of large southwestern USA wildfires significantly increase regional water supply: fact or fiction? Environ Res Lett 11(8):13. https://doi.org/10.1088/1748-9326/11/8/085006

    Article  Google Scholar 

  139. Robichaud PR (2016) Hydrology of forests after wildfire. In: Amatya DM, Williams TM, Bren L, de Jong C (eds) Forest hydrology: processes, management and assessment. CABI, Wallingford

    Google Scholar 

  140. Feikema PM, Sherwin CB, Lane PNJ (2013) Influence of climate, fire severity and forest mortality on predictions of long term streamflow: potential effect of the 2009 wildfire on Melbourne’s water supply catchments. J Hydrol 488:1–16. https://doi.org/10.1016/j.jhydrol.2013.02.001

    Article  Google Scholar 

  141. Hallema DW, Sun G, Caldwell PV, Norman SP, Cohen EC, Liu YQ, Ward EJ, McNulty SG (2017) Assessment of wildland fire impacts on watershed annual water yield: analytical framework and case studies in the United States. Ecohydrology 10(2):20. https://doi.org/10.1002/eco.1794

    Article  Google Scholar 

  142. Niemeyer RJ, Bladon KD, Woodsmith RD (2020) Long-term hydrologic recovery after wildfire and post-fire forest management in the interior Pacific Northwest. Hydrol Process 34(5):16. https://doi.org/10.1002/hyp.13665

    Article  Google Scholar 

  143. Nolan RH, Lane PNJ, Benyon RG, Bradstock RA, Mitchell PJ (2015) Trends in evapotranspiration and streamflow following wildfire in resprouting eucalypt forests. J Hydrol 524:614–624. https://doi.org/10.1016/j.jhydrol.2015.02.045

    Article  Google Scholar 

  144. Kuczera G (1987) Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest. J Hydrol 94(3-4):215–236. https://doi.org/10.1016/0022-1694(87)90054-0

    Article  Google Scholar 

  145. Blount K, Ruybal CJ, Franz KJ, Hogue TS (2020) Increased water yield and altered water partitioning follow wildfire in a forested catchment in the western United States. Ecohydrology 13(1):15. https://doi.org/10.1002/eco.2170

    Article  Google Scholar 

  146. Van Der Werf GR, Randerson JT, Giglio L, Van Leeuwen TT, Chen Y, Rogers BM, Mu M, Van Marle MJE, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997-2016. Earth Syst Sci Data 9(2):697–720. https://doi.org/10.5194/essd-9-697-2017

    Article  Google Scholar 

  147. WHO Regional Office for Europe (2013) Health effects of particulate matter. World Health Organization. Regional Office for Europe, Copenhagen

    Google Scholar 

  148. Johnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, DeFries RS, Kinney P, Bowman DMJS, Brauer M (2012) Estimated global mortality attributable to smoke from landscape fires. Environ Health Perspect 120(5):695–701. https://doi.org/10.1289/ehp.1104422

    Article  Google Scholar 

  149. Hardy CC, Ottmar RD, Peterson JL, Core JE, Seamon P (2001) Smoke management guide for prescribed and wildland fire: 2001 edition, vol PMS 420-2. NFES 1279. National Wildfire Coodination Group, Boise, ID. https://www.fs.fed.us/pnw/pubs/journals/pnw_2001_ottmar001.pdf

  150. Youssouf H, Liousse C, Roblou L, Assamoi EM, Salonen RO, Maesano C, Banerjee S, Annesi-Maesano I (2014) Non-accidental health impacts of wildfire smoke. Int J Environ Res Public Health 11(11):11772–11804. https://doi.org/10.3390/ijerph111111772

    Article  Google Scholar 

  151. Stone SL, Anderko L, Berger M, Butler CR, Cascio WE, Clune A, Damon S, Garbe P, Hauptman M, Haskell WE, Hoshiko S, Lahm P, Materna B, Mirabelli MC, Larkin N, O’Neill S, Peterson J, Riveles K, Sacks J, Wayland M, Williams JR (2019) Wildfire smoke - a guide for public health officials. United States Environmental Protection Agency, Research Triangle Park. https://www.airnow.gov/sites/default/files/2019-10/wildfire-smoke-guide-revised-2019.pdf

    Google Scholar 

  152. Wooster M, Gaveau D, Salim M, Zhang T, Xu W, Green D, Huijnen V, Murdiyarso D, Gunawan D, Borchard N, Michael S, Main B, Sepriando A (2018) New tropical peatland gas and particulate emissions factors indicate 2015 Indonesian fires released far more particulate matter (but less methane) than current inventories imply. Remote Sens 10:495. https://doi.org/10.3390/rs10040495

    Article  Google Scholar 

  153. Liu JC, Pereira G, Uhl SA, Bravo MA, Bell ML (2015) A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ Res 136:120–132. https://doi.org/10.1016/j.envres.2014.10.015

    Article  Google Scholar 

  154. Sillanpää M, Saarikoski S, Hillamo R, Pennanen A, Makkonen U, Spolnik Z, Van Grieken R, Koskentalo T, Salonen RO (2005) Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki. Sci Total Environ 350(1):119–135. https://doi.org/10.1016/j.scitotenv.2005.01.024

    Article  Google Scholar 

  155. Reid CE, Brauer M, Johnston FH, Jerrett M, Balmes JR, Elliott CT (2016) Critical review of health impacts of wildfire smoke exposure. Environ Health Perspect 124(9):1334–1343. https://doi.org/10.1289/ehp.1409277

    Article  Google Scholar 

  156. Engelsman M, Toms LML, Banks APW, Wang X, Mueller JF (2020) Biomonitoring in firefighters for volatile organic compounds, semivolatile organic compounds, persistent organic pollutants, and metals: a systematic review. Environ Res 188. https://doi.org/10.1016/j.envres.2020.109562

  157. Reid CE, Maestas MM (2019) Wildfire smoke exposure under climate change: impact on respiratory health of affected communities. Curr Opin Pulm Med 25(2):179–187. https://doi.org/10.1097/MCP.0000000000000552

    Article  Google Scholar 

  158. Liu JC, Mickley LJ, Sulprizio MP, Yue X, Peng RD, Dominici F, Bell ML (2016) Future respiratory hospital admissions from wildfire smoke under climate change in the Western US. Environ Res Lett 11(12). https://doi.org/10.1088/1748-9326/11/12/124018

  159. Jain P, Wang X, Flannigan MD (2017) Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int J Wildland Fire 26(12):1009–1020. https://doi.org/10.1071/WF17008

    Article  Google Scholar 

  160. Lydersen JM, Collins BM, Brooks ML, Matchett JR, Shive KL, Povak NA, Kane VR, Smith DF (2017) Evidence of fuels management and fire weather influencing fire severity in an extreme fire event. Ecol Appl 27(7):2013–2030. https://doi.org/10.1002/eap.1586

    Article  Google Scholar 

  161. Gómez-González S, Ojeda F, Fernandes PM (2018) Portugal and Chile: longing for sustainable forestry while rising from the ashes. Environ Sci Pol 81:104–107. https://doi.org/10.1016/j.envsci.2017.11.006

    Article  Google Scholar 

  162. Werth PA, Potter BE, Clements CB, Finney MA, Goodrick SL, Alexander ME, Cruz MG, Forthofer JA, McAllister SS (2011) Synthesis of knowledge of extreme fire behavior: volume I for fire management, vol I. US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland

    Book  Google Scholar 

  163. Viegas DX (2012) Extreme fire behaviour. Forest management: technology, practices and impact. Nova Science Publishers, Inc

    Google Scholar 

  164. Werth PA, Potter BE, Alexander ME, Clements CB, Cruz MG, Finney MA, Forthofer JM, Goodrick SL, Hoffman C, Jolly WM, McAllister SS, Ottmar RD, Parsons RA (2016) Synthesis of knowledge of extreme fire behavior: volume 2 for fire behavior specialists, researchers, and meteorologists. Gen Tech Rep PNW-GTR-891 US Department of Agriculture, Forest Service, Pacific Northwest Research Station:258

    Google Scholar 

  165. Viegas DX, Simeoni A (2011) Eruptive behaviour of Forest fires. Fire Technol 47. https://doi.org/10.1007/s10694-010-0193-6

  166. Peace M, Mattner T, Mills G, Kepert J, McCaw L (2016) Coupled fire-atmosphere simulations of the Rocky River fire using WRF-SFIRE. J Appl Meteorol Climatol 55(5):1151–1168. https://doi.org/10.1175/JAMC-D-15-0157.1

    Article  Google Scholar 

  167. Court ACTCs, Doogan M, Court ACTM (2006) The Canberra firestorm : inquests and inquiry into four deaths and four fires between 8 and 18 January 2003 : Volume I. ACT Magistrates Court, Canberra

    Google Scholar 

  168. MNP LLP (2017) A Review of the 2016 Horse River Wildfire. https://www.alberta.ca/assets/documents/Wildfire-MNP-Report.pdf

  169. Tedim F, Leone V, Amraoui M, Bouillon C, Coughlan RM, Delogu MG, Fernandes MP, Ferreira C, McCaffrey S, McGee KT, Parente J, Paton D, Pereira GM, Ribeiro ML, Viegas DX, Xanthopoulos G (2018) Defining extreme wildfire events: difficulties, challenges, and impacts. Fire 1(9):1–28. https://doi.org/10.3390/fire1010009

    Article  Google Scholar 

  170. Sharples JJ, McRae RHD, Wilkes SR (2012) Wind-terrain effects on the propagation of wildfires in rugged terrain: fire channelling. Int J Wildland Fire 21(3):282–296. https://doi.org/10.1071/WF10055

    Article  Google Scholar 

  171. Van Wagner CE (1977) Conditions for the start and spread of crown fire. Canadian J For Res 7(1):23–34. https://www.snap.uaf.edu/webshared/JenNorthway/AKFireModelingWorkshop/AKFireModelingWkshp/FSPro. Analysis Guide References/VanWagner 1977 Conditions for the start.pdf

  172. Finney MA, McAllister SS (2011) A review of fire interactions and mass fires. J Comb 2011:548328. https://doi.org/10.1155/2011/548328

    Article  Google Scholar 

  173. International Cloud Atlas (2017) World meteorological organization

    Google Scholar 

  174. Haines DA (2004) Downbursts and wildland fires: a dangerous combination. Fire Manage Today 64:59–61

    Google Scholar 

  175. Bureau of Meteorology (2020) Annual climate statement 2019. http://www.bom.gov.au/climate/current/annual/aus/#tabs=Overview. Accessed 20 Mar 2020

  176. Boer MM, Resco de Dios V, Bradstock RA (2020) Unprecedented burn area of Australian mega forest fires. Nat Clim Chang 10(3):171–172. https://doi.org/10.1038/s41558-020-0716-1

    Article  Google Scholar 

  177. Meteorology Bo (2018) Australian landscape water balance. Australian Government. http://www.bom.gov.au/water/landscape/#/sm/Actual/day/-28.4/130.4/3/Point////2021/4/15/

  178. Government A (2020). http://www.environment.gov.au

  179. Dowdy AJ (2009) Australian fire weather as represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index / Andrew J. Dowdy ... [et al.]. CAWCR technical report ; no. 10., vol. Accessed from https://nla.gov.au/nla.cat-vn4614205. Centre for Australian Weather and Climate Research, Melbourne

  180. McArthur, A. G. (1967). Fire behaviour in eucalypt forests. Leaflet No. 107. Canberra, Department of National Development, Forestry and Timber Bureau.

    Google Scholar 

  181. Bureau of Meteorology (2019) Special Climate Statement 72—dangerous bushfire weather in spring 2019. http://www.bom.gov.au/climate/current/statements/scs72.pdf

  182. McGuire A, Butt C (2020) Cut off: How the crisis at Mallacoota unfolded. https://www.theage.com.au/national/victoria/cut-off-how-the-crisis-at-mallacoota-unfolded-20200117-p53sdn.html. Accessed 20 Mar 2020

  183. 9NEWS (2019) Adelaide Hills fire continues amid heatwave warnings. https://www.9news.com.au/national/adelaide-hills-fire-downgraded-several-blazes-continue-to-burn/041d9ceb-f724-4753-9739-02347b9d1a23. Accessed 20 Mar 2020

  184. Lynn J (2020) Kangaroo Island shows burn scars on one third of the land mass. NASA. https://www.nasa.gov/feature/goddard/2020/kangaroo-island-shows-burn-scars-on-one-third-of-the-land-mass. Accessed 20 Mar 2020

  185. Australian Associated Press (2020) Kangaroo Island fire officially contained. https://www.portlincolntimes.com.au/story/6590965/kangaroo-island-fire-officially-contained/. Accessed 20 Mar 2020

  186. Adams P (2020) Bushfires devastate Kangaroo Island farmers and timber industry amid heavy losses. ABC News. https://www.abc.net.au/news/2020-02-02/kangaroo-island-sheep-stock-timber-destroyed-in-bushfires/11917220. Accessed 20 Mar 2020

  187. Dickman CR (2021) Ecological consequences of Australia’s “Black Summer” bushfires: Managing for recovery. Integr Environ Assess Manag 17:1162–1167

    Google Scholar 

  188. Fairman TA, Bennett LT, Nitschke CR (2019) Short-interval wildfires increase likelihood of resprouting failure in fire-tolerant trees. J Environ Manag 231:59–65. https://doi.org/10.1016/j.jenvman.2018.10.021

    Article  Google Scholar 

  189. Department of Environment L, Water & Planning (2021) Fire History Records of Fires primarily on Public Land. Data.vic.gov.au. https://discover.data.vic.gov.au/dataset/fire-history-records-of-fires-primarily-on-public-land

  190. DPIE (2020) NSW fire and the environment 2019-20 summary: biodiversity and landscape data and analyses to understand the effects of the fire events. New South Wales Government Department of Planning, Industry and Environment, Sydney

    Google Scholar 

  191. Baker PJ, Simkin R, Pappas N, McLeod A, McKenzie M (2012) Fire on the mountain: a multiscale, multiproxy assessment of the resilience of cool temperate rainforest to fire in Victoria’s Central Highlands. Peopled Landscapes: archaeological and Biogeographic Approaches to Landscapes’(eds Haberle SG, David B), pp 375–391

    Google Scholar 

  192. Ward M, Tulloch AIT, Radford JQ, Williams BA, Reside AE, Macdonald SL, Mayfield HJ, Maron M, Possingham HP, Vine SJ, O’Connor JL, Massingham EJ, Greenville AC, Woinarski JCZ, Garnett ST, Lintermans M, Scheele BC, Carwardine J, Nimmo DG, Lindenmayer DB, Kooyman RM, Simmonds JS, Sonter LJ, Watson JEM (2020) Impact of 2019–2020 mega-fires on Australian fauna habitat. Nat Ecol Evol 4:1321–1326

    Google Scholar 

  193. DAWE (2020) Wildlife and threatened species bushfire recovery research and resources. https://www.environment.gov.au/biodiversity/bushfire-recovery/research-and-resources. Accessed 20 Mar 2022

  194. Natural Resources (2019) New wildlife and habitat bushfire recovery program 2019-20 to 2020-21. Department for Environment and Water. https://www.naturalresources.sa.gov.au/kangarooisland/land-and-water/fire-management/New_Wildlife_and_Habitat_Bushfire_Recovery_Program_2019-20_to_2020-21. Accessed 20 Mar 2020

  195. Wylie B (2020) Queenslands and NSW drinking water hit by floods and fire but authorities say most areas are safe. ABC News. https://www.abc.net.au/news/2020-02-14/dam-water-quality-hit-by-bushfire-ash-floods/11963050. Accessed 11 June 2020

  196. WaterNSW (2020) WaterNSW experts maintain water quality for Sydney. WaterNSW. https://www.waternsw.com.au/about/newsroom/2020/waternsw-experts-maintain-water-quality-for-sydney. Accessed 11 June 2020

  197. Source W (2020) ‘Extreme solutions’ for NSW towns following bushfires, heavy rain. Australian Water Association. https://watersource.awa.asn.au/environment/natural-environment/extreme-solutions-for-nsw-towns-following-bushfires-heavy-rain/. Accessed 11 June 2020

  198. Source W (2020) ‘Extreme solutions’ for NSW towns following bushfires, heavy rain. Australian Water Association. https://watersource.awa.asn.au/environment/natural-environment/extreme-solutions-for-nsw-towns-following-bushfires-heavy-rain/. Accessed 25 June 2020

  199. Readfearn G (2020) Hundreds of thousands of fish dead in NSW as bushfire ash washed into river. https://www.theguardian.com/world/2020/jan/17/hundreds-of-thousands-of-fish-dead-in-nsw-as-bushfire-ash-washed-into-river. Accessed 11 June 2020

  200. Readfearn G (2020) A moment of complete despair’: last population of Macquarie perch all but wiped out in NSW river carnage. https://www.theguardian.com/environment/2020/feb/15/last-population-macquarie-perch-nsw-river-carnage-bushfire-ash-fish-species. Accessed 11 June 2020

  201. Pittock J (2020) Sure, save furry animals after the bushfires - but our river creatures are suffering too. The Convseration Media Group Ltd. https://theconversation.com/sure-save-furry-animals-after-the-bushfires-but-our-river-creatures-are-suffering-too-133004. Accessed 11 June 2020

  202. Dickman C (2020) More than one billion animals killed in Australian bushfires. The University of Sydney. https://www.sydney.edu.au/news-opinion/news/2020/01/08/australian-bushfires-more-than-one-billion-animals-impacted.html. Accessed 20 March 2020

  203. Rathi A, Lombrana LM (2020) Australia’s Fires Likely Emitted as Much Carbon as All Planes. https://www.bloomberg.com/news/articles/2020-01-21/australia-wildfires-cause-greenhouse-gas-emissions-to-double. Accessed 20 Mar 2020

  204. Borchers Arriagada N, Palmer AJ, Bowman DM, Morgan GG, Jalaludin BB, Johnston FH (2020) Unprecedented smoke-related health burden associated with the 2019–20 bushfires in eastern Australia. Med J Aust. https://doi.org/10.5694/mja2.50545

  205. Liu C, Chen R, Sera F, Vicedo-Cabrera AM, Guo Y, Tong S, Coelho MSZS, Saldiva PHN, Lavigne E, Matus P, Valdes Ortega N, Osorio Garcia S, Pascal M, Stafoggia M, Scortichini M, Hashizume M, Honda Y, Hurtado-Díaz M, Cruz J, Nunes B, Teixeira JP, Kim H, Tobias A, Íñiguez C, Forsberg B, Åström C, Ragettli MS, Guo Y-L, Chen B-Y, Bell ML, Wright CY, Scovronick N, Garland RM, Milojevic A, Kyselý J, Urban A, Orru H, Indermitte E, Jaakkola JJK, Ryti NRI, Katsouyanni K, Analitis A, Zanobetti A, Schwartz J, Chen J, Wu T, Cohen A, Gasparrini A, Kan H (2019) Ambient particulate air pollution and daily mortality in 652 cities. N Engl J Med 381(8):705–715. https://doi.org/10.1056/NEJMoa1817364

    Article  Google Scholar 

  206. Jenner L (2020) Rains bring very temporary relief to Australia’s fires. NASA. https://www.nasa.gov/image-feature/goddard/2020/rains-bring-very-temporary-relief-to-australias-fires. Accessed 20 Mar 2020

  207. Yu P, Xu R, Abramson MJ, Li S, Guo Y (2020) Bushfires in Australia: a serious health emergency under climate change. Lancet Planet Health 4(1):e7–e8. https://doi.org/10.1016/S2542-5196(19)30267-0

    Article  Google Scholar 

  208. The World Air Quality Index project (2020) https://aqicn.org/city/australia. Accessed 20 Mar 2020

  209. MacManus J (2020) Blood red sun greets NZ on New Years Day as Australian bushfire smoke stains skies. https://www.stuff.co.nz/national/118546900/blood-red-sun-greets-nz-on-new-years-day-as-australian-bushfire-smoke-stains-skies. Accessed 20 Mar 2020

  210. McCullough E (2020) Smoke from fires in Australia reaches Brazil. https://www.brusselstimes.com/all-news/business/103241/belgiums-hospitality-sector-projected-to-lose-1-7-billion-euros/. Accessed 20 Mar 2020

  211. Kablick III GP, Allen DR, Fromm MD, Nedoluha GE Australian pyroCb smoke generates synoptic-scale stratospheric anticyclones. Geophys Res Lett n/a (n/a):e2020GL088101. https://doi.org/10.1029/2020gl088101

  212. Manova M (2020) Australia’s Devastating Wildfires Were Not Inevitable. https://www.lovelandmagazine.com/australias-devastating-wildfires-were-not-inevitable-covering-climate-now/

  213. Butler B (2020) Economic impact of Australia’s bushfires set to exceed $4.4bn cost of Black Saturday. https://www.theguardian.com/australia-news/2020/jan/08/economic-impact-of-australias-bushfires-set-to-exceed-44bn-cost-of-black-saturday. Accessed 20 Mar 2020

  214. Wilkie K (2020) Devastating bushfire season will cost Australian the economy $20BILLION, experts warn. https://www.dailymail.co.uk/news/article-7863335/Devastating-bushfire-season-cost-Australian-economy-20BILLION-experts-warn.html. Accessed 20 Mar 2020

  215. Martin M (2020) AM Best: Insurers can contend with mounting bushfire losses. https://www.insurancebusinessmag.com/au/news/breaking-news/am-best-insurers-can-contend-with-mounting-bushfire-losses-211540.aspx. Accessed 20 Mar 2020

  216. McDonald T (2019) Australia fires: The huge economic cost of Australia’s bushfires. https://www.bbc.com/news/business-50862349. Accessed 20 Mar 2020

  217. Pausas JG, Parr CL (2018) Towards an understanding of the evolutionary role of fire in animals. Evol Ecol. https://doi.org/10.1007/s10682-018-9927-6

Download references

Acknowledgments

Alexander Filkov and Matt Swan were funded by the Bushfire and Natural Hazards Cooperative Research Centre. Jane Cawson was funded by the Department of Environment, Land, Water and Planning. Trent Penman was funded by The University of Melbourne. We wish to acknowledge the NSW Rural Fire Service, SA Department of Environment and Water and Vic Department of Environment, Land, Water and Planning for contributions to the chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Filkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filkov, A.I., Cawson, J., Swan, M.H., Penman, T.D. (2023). Wildland Fire. In: Meacham, B.J., McNamee, M. (eds) Handbook of Fire and the Environment. The Society of Fire Protection Engineers Series. Springer, Cham. https://doi.org/10.1007/978-3-030-94356-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94356-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94355-4

  • Online ISBN: 978-3-030-94356-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics