IEEE standard for extensible event stream (XES) for achieving interoperability in event logs and event streams. IEEE Std 1849–2016, pp. 1–50 (2016). https://doi.org/10.1109/IEEESTD.2016.7740858
van der Aalst, W.M.P.: Process-aware information systems: lessons to be learned from process mining. Trans. Petri Nets Model. Concurr. 2, 1–26 (2009). https://doi.org/10.1007/978-3-642-00899-3_1
van der Aalst, W.M.P.: Data science in action. In: Process Mining, pp. 3–23. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1
Bano, D., Weske, M.: Discovering data models from event logs. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds.) ER 2020. LNCS, vol. 12400, pp. 62–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62522-1_5
CrossRef
Google Scholar
Bayomie, D., Awad, A., Ezat, E.: Correlating unlabeled events from cyclic business processes execution. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 274–289. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_17
CrossRef
Google Scholar
Bayomie, D., Di Ciccio, C., La Rosa, M., Mendling, J.: A probabilistic approach to event-case correlation for process mining. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 136–152. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_12
CrossRef
Google Scholar
Bayomie, D., Helal, I.M.A., Awad, A., Ezat, E., ElBastawissi, A.: Deducing case ids for unlabeled event logs. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 242–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_20
CrossRef
Google Scholar
Burattin, A., Vigo, R.: A framework for semi-automated process instance discovery from decorative attributes. In: 2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 176–183. IEEE (2011)
Google Scholar
Chen, P.P.S.: The entity-relationship model-toward a unified view of data. ACM Trans. Database Syst. (TODS) 1(1), 9–36 (1976)
CrossRef
Google Scholar
van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005). https://doi.org/10.1007/11494744_25
CrossRef
Google Scholar
Ferreira, D.R., Gillblad, D.: Discovering process models from unlabelled event logs. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 143–158. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03848-8_11
CrossRef
Google Scholar
Johnson, A., Bulgarelli, L., Pollard, T., Horng, S., Celi, L.A., Mark, R.: MIMIC-IV (2020). https://doi.org/10.13026/A3WN-HQ05, https://physionet.org/content/mimiciv/0.4/
de Leoni, M.M., Mannhardt, F.: Road Traffic Fine Management Process (2015). 2, https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5, https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249
Li, Y., Liu, B.: A normalized levenshtein distance metric. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1091–1095 (2007). https://doi.org/10.1109/TPAMI.2007.1078
CrossRef
Google Scholar
de Murillas, E.G.L., Reijers, H.A., van der Aalst, W.M.P.: Case notion discovery and recommendation: automated event log building on databases. Knowl. Inf. Syst. 62(7), 2539–2575 (2019). https://doi.org/10.1007/s10115-019-01430-6
CrossRef
Google Scholar
Weske, M.: Business Process Management - Concepts, Languages, Architectures, 3rd edn. Springer, Heidelberg (2019)
Google Scholar