Skip to main content

THB-Spline Approximations for Turbine Blade Design with Local B-Spline Approximations

  • Conference paper
  • First Online:
Mathematical and Computational Methods for Modelling, Approximation and Simulation

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 29))

Abstract

We consider two-stage scattered data fitting with truncated hierarchical B-splines (THB-splines) for the adaptive reconstruction of industrial models. The first stage of the scheme is devoted to the computation of local least squares variational spline approximations, exploiting a simple fairness functional to handle data distributions with a locally varying density of points. Hierarchical spline quasi-interpolation based on THB-splines is considered in the second stage of the method to construct the adaptive spline surface approximating the whole scattered data set and a suitable strategy to guide the adaptive refinement is introduced. A selection of examples on geometric models representing components of aircraft turbine blades highlights the performances of the scheme. The tests include a scattered data set with voids and the adaptive reconstruction of a cylinder-like surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beirão da Veiga, L., Buffa, A., Sangalli, G., Vazquez, R.: Analysis-suitable T-splines of arbitrary degree: definition and properties.Math. Mod. Meth. Appl. Sci. 23, 1979–2003 (2013)

    Google Scholar 

  2. Bracco, C., Giannelli, C., Mazzia, F., Sestini, A.: Bivariate hierarchical Hermite spline quasi-interpolation. BIT Numer. Math. 56, 1165–1188 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bracco, C., Lyche, T., Manni, C., Roman, F., Speleers, H.: On the dimension of Tchebycheffian spline spaces over planar T-meshes. Comput. Aided Geom. Des. 45, 151–173 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bracco, C., Giannelli, C., Sestini, A.: Adaptive scattered data fitting by extension of local approximations to hierarchical splines. Comput. Aided Geom. Des. 52–53, 90–105 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bracco, C., Giannelli, C., Großmann, D., Sestini, A.: Adaptive fitting with THB-splines: error analysis and industrial applications. Comput. Aided Geom. Des. 62, 239–252 (2018)

    Article  MathSciNet  Google Scholar 

  6. Cavoretto, R., De Rossi, A., Perracchione, E.: Optimal selection of local approximants in RBF-PU interpolation. J. Sci. Comput. 74, 1–22 (2018)

    Article  MathSciNet  Google Scholar 

  7. Davydov, O., Schumaker, L.: Interpolation and scattered data fitting on manifolds using projected Powell–Sabin splines. IMA J. Numer. Anal. 28, 785–805 (2008)

    Article  MathSciNet  Google Scholar 

  8. Davydov, O., Morandi, R., Sestini, A.: Local hybrid approximations for scattered data fitting with bivariate splines. Comput. Aided Geom. Des. 23, 703–721 (2006)

    Article  MathSciNet  Google Scholar 

  9. Deng, J., Chen, F., Feng, Y.: Dimensions of spline spaces over T-meshes. J. Comput. Appl. Math. 194, 267–283 (2006)

    Article  MathSciNet  Google Scholar 

  10. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 30, 331–356 (2013)

    Article  MathSciNet  Google Scholar 

  11. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14, 231–250 (1997)

    Article  MathSciNet  Google Scholar 

  12. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Dodgson N.A., Floater M.S., Sabin M.A. (eds.) Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization, pp. 157–186. Springer, Berlin (2005)

    Chapter  Google Scholar 

  13. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29, 485–498 (2012)

    Article  MathSciNet  Google Scholar 

  14. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40, 459–490 (2014)

    Article  MathSciNet  Google Scholar 

  15. Kiss, G., Giannelli, C., Zore, U., Jüttler, B., Großmann, D., Barner, J.: Adaptive CAD model (re-)construction with THB-splines. Graph. Models 76, 273–288 (2014)

    Article  Google Scholar 

  16. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)

    MATH  Google Scholar 

  17. Lai, M.J., Schumaker, L.L.: A domain decomposition method for computing bivariate spline fits of scattered data. SIAM J. Numer. Anal. 47, 911–928 (2009)

    Article  MathSciNet  Google Scholar 

  18. Lee, B.G., Lyche, T., Mørken, K.: Some examples of quasi–interpolants constructed from local spline projectors. In: T. Lyche, L.L. Schumaker (eds.), Mathematical Methods for Curves and Surfaces, Oslo 2000. pp. 243–252. Vanderbilt University Press (2001)

    Google Scholar 

  19. Lyche, T., Schumaker, L.L.: Local spline approximation methods. J. Approx. Theory 15, 294–325 (1975)

    Article  MathSciNet  Google Scholar 

  20. Mourrain, B.: On the dimension of spline spaces on planar T-meshes. Math. Comput. 83, 847–871 (2014)

    Article  MathSciNet  Google Scholar 

  21. Patrizi, F., Dokken, T.: Linear dependence of bivariate Minimal Support and Locally Refined B-splines over LR-meshes. Comput. Aided Geom. Des. 77, 101803 (2020)

    Article  MathSciNet  Google Scholar 

  22. Prautzsch, H., Boehm, W., Paluszny, M.: Bézier and B-Spline Techniques. Springer, Berlin (2002)

    Book  Google Scholar 

  23. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22, 477–484 (2003)

    Article  Google Scholar 

  24. Speleers, H.: Hierarchical spline spaces: quasi-interpolants and local approximation estimates. Adv. Comput. Math. 43, 235–255 (2017)

    Article  MathSciNet  Google Scholar 

  25. Speleers, H., Manni, C.: Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132, 155–184 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewer for his/her useful suggestions. Cesare Bracco, Carlotta Giannelli and Alessandra Sestini are members of the INdAM Research group GNCS. The INdAM support through GNCS and Finanziamenti Premiali SUNRISE is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Sestini .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix we give the proof that, assuming d = (d 1, d 2) with d i ≥ 1, i = 1, 2, the local vector spline s J defined in Sect. 3.3 exists and is unique, provided that the sites in X J are not collinear. First of all we observe that the objective function in (3.2) can be split in the sum of three analogous objective functions, one for each component \( s_J^{(k)}, k=1,2,3,\) of s J,

$$\displaystyle \begin{aligned} \sum_{i \in I_J} \Vert {\mathbf{s}}_J({\mathbf{x}}_i) - {\mathbf{f}}_i \Vert_2^2 + \mu \, E({\mathbf{s}}_J) = \sum_{k=1}^3 \big( \sum_{i \in I_j} \big( s_J^{(k)}({\mathbf{x}}_i) - ({\mathbf{f}}_i)_k \big)^2 + \mu \, \rho( s _J^{(k)} ) \big) \,,\end{aligned}$$

where

$$\displaystyle \begin{aligned}\rho \big( s _J^{(k)}\big) := \int_{\Omega_J} \left(\frac{\partial^2 s_J^{(k)}}{\partial x^2}\right)^2 + 2 \left(\frac{\partial^2 s_J^{(k)}}{\partial x \partial y}\right) ^2 +\left(\frac{\partial^2 s_J^{(k)}}{\partial y^2}\right)^2 \,\text{d}x\text{d}y\,.\end{aligned}$$

Thus the study can be developed in the scalar case and for brevity we remove the subscript or superscript k ranging between 1 and 3. The analysis is developed in the following theorem, where \(s_J: \Omega _J \rightarrow \mathbb {R}\) denotes the local spline in \(\mathcal {S}_J\) associated to the coefficient vector \(\mathbf {c} \in \mathbb {R}^{\ell _J},\) with J:= | ΛJ| ,

$$\displaystyle \begin{aligned}s_J(\mathbf{x}) = \sum_{I \in \Lambda_J} c_I B_I(\mathbf{x})\,.\end{aligned}$$

Theorem

Let the considered spline bi-degree d = (d 1, d 2) be such that d i ≥ 1, i = 1, 2. When the points x i ∈ Ω J, i  I J are not collinear, there exists a unique local spline \(s_J \in \mathcal {S}_J\) minimizing the following objective function,

$$\displaystyle \begin{aligned} \sum_{i \in I_J} \big(s_J({\mathbf{x}}_i) - f_i \big)^2 + \mu \, \rho(s_J)\,, \end{aligned} $$
(3.4)

where μ > 0. If such points in Ω J are collinear, then such minimizer does not exist or is not unique.

Proof

Let us observe that ρ(s J) = c T M c , where \(M \in \mathbb {R}^{\ell _J \times \ell _J}\) is such that

$$\displaystyle \begin{aligned}M_{i,r} {:=} \int_{\Omega_J} \left(\frac{\partial^2 B_I }{\partial x^2}\right)\left(\frac{\partial^2 B_R }{\partial x^2}\right) + 2 \left(\frac{\partial^2 B_I}{\partial x \partial y}\right) \left(\frac{\partial^2 B_R}{\partial x \partial y}\right) +\left(\frac{\partial^2 B_I }{\partial y^2}\right)\left(\frac{\partial^2 B_R }{\partial y^2}\right)\text{d}x\text{d}y\,,\end{aligned}$$

where we are assuming that, in the adopted ordering of the B-spline basis elements of \(\mathcal {S}_J,\) B R and B I are the r–th and the i–th ones. On the other hand it is

$$\displaystyle \begin{aligned}\sum_{i \in I_J} \big(s_J({\mathbf{x}}_i) - f_i \big)^2 = \Vert V \mathbf{c} - \mathbf{F} \Vert_2^2\, = {\mathbf{c}}^T A^TA \mathbf{c} - 2{\mathbf{F}}^TA \mathbf{c} + {\mathbf{F}}^T\mathbf{F}\,,\end{aligned}$$

where \(\mathbf {F} \in \mathbb {R}^{|I_J|}\) denotes the vector collecting all the f i, i ∈ I J and A is the |I J|×  J collocation matrix of the tensor-product B-spline basis generating \(\mathcal {S}_J.\) Thus the objective function in (3.4) can be written also as the following quadratic function,

$$\displaystyle \begin{aligned}{\mathbf{c}}^T (A^TA + \mu M) \mathbf{c} - 2{\mathbf{F}}^TA \mathbf{c} + {\mathbf{F}}^T\mathbf{F}\,.\end{aligned}$$

As well known a quadratic function admits a global unique minimizer if and only if the symmetric matrix defining its homogeneous quadratic terms is positive definite and in such case the minimizer is given by its unique stationary point. In our case such matrix is A T A + μM and the stationary points are the solutions of the following linear system of J equations in as many unknowns,

$$\displaystyle \begin{aligned}(A^TA + \mu M) \mathbf{c} = A^T \mathbf{F}\,.\end{aligned}$$

Now, for all positive μ the matrix A T A + μM is symmetric and positive semidefinite since, for any vector \(\boldsymbol {\zeta } \in \mathbb {R}^{\ell _J}, \boldsymbol {\zeta } \ne \mathbf {0}\) it is ζ T A T A ζ ≥ 0 and ζ T M ζ ≥ 0, the last inequality descending from the fact that ζ T M ζ = ρ(s ζ), where \(s_{\boldsymbol {\zeta }}(\mathbf {x}) = \sum _{I \in \Lambda _J} \zeta _I B_I(\mathbf {x})\,.\) Now if the points x i, i ∈ I j are distributed in ΩJ along a straight line ax + by + c = 0, the proposition proved in Sect. 3.3 implies that it is possible to find \(\boldsymbol {\zeta } \in \mathbb {R}^{\ell _J}, \boldsymbol {\zeta } \ne \mathbf {0}\) such that s ζ(x) ≡ ax + by + c, ∀x ∈ ΩJ. This implies that s ζ(x i) = 0 , ∀i ∈ I J, that is the vector \(A \boldsymbol {\zeta } \in \mathbb {R}^{|I_J|}\) vanishes. On the other hand, clearly it is also 0 = ρ(s ζ) = ζ T M ζ , since s ζ| ΩJ is a linear polynomial. This proves that the symmetric positive semidefinite matrix (A T A + μM) is not positive definite when all the x i, i ∈ I J are collinear. This is the only possible data distribution associated to a non positive definite matrix. Indeed if the points x i, i ∈ I J are not collinear, if \(\boldsymbol {\zeta } \in \mathbb {R}^{\ell _J}, \boldsymbol {\zeta } \ne \mathbf {0}\) is associated to a non vanishing linear polynomial, it is ζ T M ζ = ρ(s ζ) = 0 but A ζ0 and so ζ T A T A ζ > 0; on the other hand if \(\boldsymbol {\zeta } \in \mathbb {R}^{\ell _J}, \boldsymbol {\zeta } \ne \mathbf {0}\) is not associated to a linear polynomial, then ζ T M ζ = ρ(s ζ) > 0. □

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bracco, C., Giannelli, C., Großmann, D., Imperatore, S., Mokriš, D., Sestini, A. (2022). THB-Spline Approximations for Turbine Blade Design with Local B-Spline Approximations. In: Barrera, D., Remogna, S., Sbibih, D. (eds) Mathematical and Computational Methods for Modelling, Approximation and Simulation. SEMA SIMAI Springer Series, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-94339-4_3

Download citation

Publish with us

Policies and ethics