Skip to main content

Anomaly Detection in Blockchain-Enabled Supply Chain: An Ontological Approach

  • Conference paper
  • First Online:
Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations (PLM 2021)

Abstract

In our work, we propose an anomaly detection framework, for detecting anomalous transactions in business processes from transaction event logs. Such a framework will help enhance the accuracy of anomaly detection in the global Supply Chain, improve the multi-level business processes workflow in the Supply Chain domain, and will optimize the processes in the Supply Chain in terms of security and automation. In the proposed work, Ontology is utilized to provide anomaly classification in business transactions, based on crafted SWRL rules for that purpose. Our work has been evaluated based on logs generated from simulating a generic business process model related to a procurement scenario, and the findings show that our framework was able to detect and classify anomalous transactions form those logs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.promtools.org/doku.php?id=prom610.

  2. 2.

    https://www.w3.org/2001/sw/wiki/Pellet.

References

  1. Mentzer, J.T., et al.: Defining supply chain management. J. Bus. Logistics 22, 1–25 (2001)

    Google Scholar 

  2. CoinDesk Homepage. http://www.coindesk.com/state-of-blockchain-q1-2016. Accessed 15 Oct 2021

  3. Bitcoin Homepage. https://bitcoin.org/bitcoin.pdf Bitcoin: a peer-to-peer electronic cash system (2008). Accessed 15 Oct 2021

  4. Mann, S., Potdar, V., Gajavilli, R.S., Chandan, A.: Blockchain technology for supply chain traceability, transparency and data provenance. In: The 2018 International Conference on Blockchain Technology and Application (ICBTA 2018), pp. 22–26. Association for Computing Machinery, New York, NY, USA (2018)

    Google Scholar 

  5. Xu, X., et al.: The blockchain as a software connector. In: 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), Venice, pp. 182–191 (2016)

    Google Scholar 

  6. Omohundro, S.: Cryptocurrencies, smart contracts, and artificial intelligence. AI Matters J. 1(2), 19–21 (2014)

    Article  MathSciNet  Google Scholar 

  7. Singh, A., Parizi, R.M., Zhang, Q., Choo, K.K.R., Dehghantanha, A.: Blockchain smart contracts formalization: approaches and challenges to address vulnerabilities. Comput. Secur. J. 88, 101654 (2020)

    Google Scholar 

  8. Sarno, R., Wibowo, W.A., Kartini, H.F., Effendi Y., Sungkono, K.: Determining model using non-linear heuristics miner and control-flow pattern. TELKOMNIKA Telecommun. Comput. Electron. Control J. 14(1), 349–359 (2016)

    Google Scholar 

  9. Sarno, R., Pamungkas, E.W., Sunaryono, D., Sarwosri, A.W.: Business process composition based on meta models. In: International Seminar on Intelligent Technology and Its Applications (ISITIA) (2015)

    Google Scholar 

  10. Saylam, R., Sahingoz, O.K.: Process mining in business process management: concepts and challenges. In: 2013 International Conference on Electronics, Computer and Computation (ICECCO), Ankara (2013)

    Google Scholar 

  11. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. J. 284(5), 28–37 (2001)

    Article  Google Scholar 

  12. Studer, R., Benjamins, R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. J. 25(1–2), 161–198 (1998)

    Article  Google Scholar 

  13. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_0

    Chapter  Google Scholar 

  14. Mostefai, S., Bouras, A.:What ontologies for PLM: a critical analysis. In: Proceedings of the IEEE International Technology Management Conference (ICE), 2006, pp. 1–8 (2006). https://doi.org/10.1109/ICE.2006.7477092

  15. Muhammad, F.M., Moalla, N., Bouras, A.: Towards ensuring satisfiability of merged ontology. Procedia Comput. Sci. J. 4, 2216–2225 (2011)

    Article  Google Scholar 

  16. Horrocks, I., Patel-Schneider, P.F., Boley, H., Grosof, B., Dean, M.: SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Network Inference, and Stanford University, National Research Council of Canada (2004)

    Google Scholar 

  17. Natschläger, C.: Towards a BPMN 2.0 ontology. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 1–15. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25160-3_1

    Chapter  Google Scholar 

  18. Abramowicz, W., Filipowska, A., Kaczmarek, M., Kaczmarek, T.: Semantically enhanced business process modelling notation. In: Proceedings of the Workshop on Semantic Business Process and Product Lifecycle Management SBPM (2007)

    Google Scholar 

  19. Di Francescomarino, C., Ghidini, C., Rospocher, M., Serafini, L., Tonella, P.: Reasoning on semantically annotated processes. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 132–146. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89652-4_13

    Chapter  Google Scholar 

  20. Ciccarese, P., Peroni, S.: The collections ontology: creating and handling collections in OWL 2 DL frameworks. Semant. Web 5(6), 515–529 (2016)

    Article  Google Scholar 

  21. Gangemi, A., Peroni, S., Shotton, D., Vitali F.: A pattern-based ontology for describing publishing workflows. In: Proceedings of the 5th International Workshop on Ontology and Semantic Web Patterns (2014)

    Google Scholar 

  22. Gangemi, A., Peroni, S., Shotton, D., Vitali, F.: The Publishing Workflow Ontology (PWO). Semant. Web 8(5), 703–718 (2015)

    Article  Google Scholar 

  23. Roy, S., Dayan, G.S., Holla, V.D.: Modeling industrial business processes for querying and retrieving using OWL+SWRL. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11230, pp. 516–536. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02671-4_31

    Chapter  Google Scholar 

  24. Sarno, R., Sinaga, F.P.: Business process anomaly detection using ontology-based process modelling and multi-level class association rule learning. In: International Conference on Computer, Control, Informatics and its Applications (IC3INA), 2015, pp. 12–17 (2015)

    Google Scholar 

  25. Sinaga, F., Sungkono, K.R., Sarno, R.: Anomaly detection in business processes using process mining and fuzzy association rule learning. J. Big Data 7, 1–19 (2019/2020)

    Google Scholar 

  26. Qiushi, C., Samet, A., Zanni-Merk, C., Beuvron, F., Reich, C.: An ontology-based approach for failure classification in predictive maintenance using fuzzy C-means and SWRL rules. Procedia Comput. Sci. 159, 630–639 (2019)

    Google Scholar 

  27. Gasmi, H., Bouras, A.: Ontology-based education/industry collaboration system. IEEE Access 6, 1–16 (2017)

    Google Scholar 

Download references

Acknowledgment

This research was achieved as part of the National Priority Research Program (NPRP) Research Project: NPRP11S-1227–170135, funded by the Qatar National Research Fund (QNRF): “SupplyLedger project: Designing an Efficient Smart Contract based Blockchain System from Multi-modal Supply Chain Systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahani Abu Musa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Musa, T.A., Bouras, A. (2022). Anomaly Detection in Blockchain-Enabled Supply Chain: An Ontological Approach. In: Canciglieri Junior, O., Noël, F., Rivest, L., Bouras, A. (eds) Product Lifecycle Management. Green and Blue Technologies to Support Smart and Sustainable Organizations. PLM 2021. IFIP Advances in Information and Communication Technology, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-030-94335-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94335-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94334-9

  • Online ISBN: 978-3-030-94335-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics