Abstract
Supercapacitors, known as electrochemical capacitors, are very attractive as energy storage devices due to their high-power density (up to 410 kW kg−1), their unique ability to undergo charge/discharge quickly and their long cycling life (that could reach 4105 cycles). Efforts have been dedicated to develop various carbon-based nanomaterials for energy storage, specially supercapacitors. Carbon-based materials and conducting polymers (ie; Polypyrrole and Polyaniline) are considered the most promising candidates for capacitive materials, as they offer high charging capacity through diverse mechanisms. Among these carbon-based materials are nano-crystalline diamond (NCD) films, which were widely studied during the past decades due to their special features like; short-range sp3 bonded carbon atoms and large surface to volume ratio. Artificial fabrication of NCD films was developed using various techniques like; high-pressure high-temperature (HPHT), chemical vapor deposition, plasma-discharge-stimulated, laser ablation,hot-filament technique,, and coaxial arc plasma deposition. Although carbon-based nanomaterials display good stability in energy storage applications, the capacitance values are yet limited by the microstructures within the materials; Therefore, their nanocomposites with conducting polymers provide higher performance and improved properties. This chapter aims to summarize and discuss the recent synthetic developments of nanocrystalline diamond/conducting polymer nanocomposites, and their applications to energy storage and supercapacitor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- (NCD):
-
Nanocrystalline diamond
- (HPHT):
-
high-pressure high temperature
- (NDs):
-
nanodiamonds
- (CNTs):
-
carbon nanotubes
- (CVD):
-
chemical vapor deposition
- (CAPD):
-
coaxial arc plasma deposition
- (DC):
-
direct current
- (UNCD):
-
ultrananocrystalline diamond
- (MPCVD):
-
Microwave plasma assisted chemical vapor deposition
- (HFCVD):
-
Hot filament assisted chemical vapor deposition
- (PLA):
-
pulsed laser ablation
- (PVD):
-
Physical vapor deposition
- (rGO):
-
reduced graphene oxide
- (3D):
-
three-dimensional
- (CNF):
-
Carbon nanofibers
- (BDND):
-
boron doped ND
- (BDD):
-
boron doped diamond
- (RTILs):
-
Room-temperature ionic liquids
- (OLC):
-
Onion-Like-Carbon
References
Wang, S., Tongzhen, W., Zhiping, Q.: Supercapacitor energy storage technology and its application in renewable energy power generation system. In: Goswami, D.Y., Zhao, Y. (eds.) Proceedings of ISES World Congress 2007 (Vol. I–Vol. V), pp. 2805–2809. Springer, Heidelberg (2008)
Beardsall, J.C., Christopher, A.G., Moofik, A-T.: Energy storage systems: a review of the technology and its application in power systems. In: 2015 50th International Universities Power Engineering Conference (UPEC), pp. 1–6. IEEE (2015)
Becker, H.I.: Low voltage electrolytic capacitor. U.S. Patent 2,800,616, issued 23 July 1957
Boos, D.I.: U.S. Patent 3 536 963 (to Standard Oil, SO-HIO) (1970)
da Silva, L.M., et al.: Constituent material influence on the electrochemical performance and supercapacitance of PAni/diamond/CF composite. Mater. Sci. Eng. B 228, 249–260 (2018)
de Barros, S.D.T., Jaqueline, D.S., Elizabeth, R.L., Luiz, F.B.M.: Metal-catalyzed cross-coupling reactions with supported nanoparticles: recent developments and future directions. Catal. Rev. 58(4), 439–496 (2016)
Wang, F., Liu, J.: Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide. Nanoscale 5(24), 12375–12382 (2013)
Decarli, P.S.: Shock wave synthesis of diamond and other phases. MRS Proc. Lib. Arch. 383, 21–31 (1995)
DeCarli, P.S., Jamieson, J.C.: Formation of diamond by explosive shock. Science 133(3467), 1821–1822 (1961)
Turneaure, S.J., Surinder, M.S., Travis, J., Winey, J. M., Yogendra, M.: Gupta. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci. Adv. 3(10), eaao3561 (2017)
Bundy, F.P.: Direct conversion of graphite to diamond in static pressure apparatus. Science 137(3535), 1057–1058 (1962)
Voronov, O.A., Tompa, G.S., Kear, B.H.: High pressure-high temperature device for making diamond materials. Diam. Mater. VII 25, 264–271 (2001)
Xiao, H.Y., Qin, Y.K., Li, S.S., Liang, Z.Z., Ma, H.A., Jia, X.P.: Effects of additive boron on HPHT diamond single crystals grown by TGM. Sci. China Phys. Mech. Astron. 54(12), 2186–2190 (2011)
Huang, G.F., et al.: Effects of additive NaN 3 on the HPHT synthesis of large single crystal diamond grown by TGM. Sci. China Phys. Mech. Astron. 53(10), 1831–1835 (2010)
Matsumoto, S., Sato, Y., Kamo, M., Setaka, N.: Vapor deposition of diamond particles from methane. Jpn. J. Appl. Phys. 21(4A), L183 (1982)
Kamo, M., Sato, Y., Matsumoto, S., Setaka, N.: Diamond synthesis from gas phase in microwave plasma. J. Cryst. Growth 62(3), 642–644 (1983)
Kurihara, K., Sasaki, K., Kawarada, M., Koshino, N.: High rate synthesis of diamond by dc plasma jet chemical vapor deposition. Appl. Phys. Lett. 52(6), 437–438 (1988)
Kurihara, K.K., Sasaki, M.K., Goto, Y.: Applications of Diamond Films and Related Materials (1991)
Sumant, A.V., Orlando, H.A., Derrick, C.M.: Ultrananocrystalline diamond films with optimized dielectric properties for advanced RF MEMS capacitive switches. U.S. Patent 8,354,290, issued 15 January 2013
Auciello, O., Sumant, A.V.: Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices. Diam. Relat. Mater. 19(7–9), 699–718 (2010)
Sumant, A.V., Auciello, O., Carpick, R.W., Srinivasan, S., Butler, J.E.: Ultrananocrystalline and nanocrystalline diamond thin films for MEMS/NEMS applications. MRS Bull. 35(4), 281–288 (2010)
Schwander, M., Partes, K.: A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 20(9), 1287–1301 (2011)
Gottlieb, S., Wöhrl, N., Schulz, S., Buck, V.: Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper. Springerplus 5(1), 568 (2016)
Yan, G., et al.: Mechanical properties and wear behavior of multi-layer diamond films deposited by hot-filament chemical vapor deposition. Appl. Surf. Sci. 494, 401–411 (2019)
Tang, Y., Li, Y.S., Yang, Q., Hirose, A.: Deposition and characterization of diamond coatings on WC-Co cutting tools with W/Al interlayer. Diam. Relat. Mater. 19(5–6), 496–499 (2010)
Heaney, P.J., Sumant, A.V., Torres, C.D., Carpick, R.W., Pfefferkorn, F.E.: Diamond coatings for micro end mills: enabling the dry machining of aluminum at the micro-scale. Diam. Relat. Mater. 17(3), 223–233 (2008)
Xiao, X., Birrell, J., Gerbi, J.E., Auciello, O., Carlisle, J.A.: Low temperature growth of ultrananocrystalline diamond. J. Appl. Phys. 96(4), 2232–2239 (2004)
Tsugawa, K., et al.: Nanocrystalline diamond growth in a surface-wave plasma. Diam. Relat. Mater. 20(5–6), 833–838 (2011)
Popov, C., Kulisch, W., Boycheva, S., Yamamoto, K., Ceccone, G., Koga, Y.: Structural investigation of nanocrystalline diamond/amorphous carbon composite films. Diam. Relat. Mater. 13(11–12), 2071–2075 (2004)
Heiman, A., Gouzman, I., Christiansen, S.H., Strunk, H.P., Hoffman, A.: Nano-diamond films deposited by direct current glow discharge assisted chemical vapor deposition. Diam. Relat. Mater. 9(3–6), 866–871 (2000)
Taylor, A.P., et al.: Precursor gas composition optimisation for large area boron doped nano-crystalline diamond growth by MW-LA-PECVD. Carbon 128, 164–171 (2018)
Mehedi, H.-A., et al.: Low temperature and large area deposition of nanocrystalline diamond films with distributed antenna array microwave-plasma reactor. Diam. Relat. Mater. 47, 58–65 (2014)
Muranaka, Y., Yamashita, H., Miyadera, H.: Worldwide status of low temperature growth of diamond. Diam. Relat. Mater. 3(4–6), 313–318 (1994)
Das, D., Singh, R.N.: A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 52(1), 29–64 (2007)
Hara, T., et al.: Consideration of diamond film growth on various orientation substrates of diamond in oxygen and hydrogen atmospheres by reactive pulsed laser deposition. Diam. Relat. Mater. 13(4–8), 622–626 (2004)
Yoshitake, T., et al.: Structural and physical characteristics of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films deposited using a coaxial arc plasma gun. Jpn. J. Appl. Phys. 49(1R), 015503 (2010)
Ogale, S.B., et al.: Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces. Phys. Rev. B 36(16), 8237–8250 (1987)
Polo, M.C., Cifre, J., Sánchez, G., Aguiar, R., Varela, M., Esteve, J.: Pulsed laser deposition of diamond from graphite targets. Appl. Phys. Lett. 67(4), 485–487 (1995)
Amans, D., et al.: Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18(2–3), 177–180 (2009)
Wang, J.B., Zhang, C.Y., Zhong, X.L., Yang, G.W.: Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid–solid interfacial reaction. Chem. Phys. Lett. 361(1–2), 86–90 (2002)
Yoshitake, T., Nishiyama, T., Aoki, H., Suizu, K., Takahashi, K., Nagayama, K.: The effects of substrate temperature and laser wavelength on the formation of carbon thin films by pulsed laser deposition. Diam. Relat. Mater. 8(2–5), 463–467 (1999)
Hanada, K., Yoshitake, T., Nishiyama, T., Nagayama, K.: Time-resolved spectroscopic observation of deposition processes of ultrananocrystalline diamond/amorphous carbon composite films by using a coaxial arc plasma gun. Jpn. J. Appl. Phys. 49(8), 08JF09 (2010)
Ali, A.M., Egiza, M., Murasawa, K., Fukui, Y., Gonda, H., Sakurai, M., Yoshitake, T.: Negative bias effects on deposition and mechanical properties of ultrananocrystalline diamond/amorphous carbon composite films deposited on cemented carbide substrates by coaxial arc plasma. Diam. Relat. Mater. 96, 67–73 (2019)
Zkria, A., Gima, H., Shaban, M., Yoshitake, T.: Electrical characteristics of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition Appl. Phys. Express 8, 095101 (2015)
Katamune, Y., Ohmagari, S., Al-Riyami, S., Takagi, S., Shaban, M., Yoshitake, T.: Heterojunction diodes comprising p-type ultrananocrystalline diamond films prepared by coaxial arc plasma deposition and n-type silicon substrates. Jpn. J. Appl. Phys. 52, 065801 (2013)
Zkria, A., Abubakr, E., Egiza, M., Haque, A., Narayan, J., Yoshitake, T.: Structural evolution of laser-irradiated ultrananocrystalline diamond/amorphous carbon composite films prepared by coaxial arc plasma. Appl. Phys. Express 13(10), 105503 (2020)
Naragino, H., Tominaga, A., Hanada, K., Yoshitake, T.: Synthesis method for ultra-nanocrystalline diamond in powder employing a coaxial arc plasma gun. Appl. Phys. Express 8(7), 075101 (2015)
Ali, M.A., Deckert-Gaudig, T., Egiza, M., Deckert, V., Yoshitake, T.: Near-and far-field Raman spectroscopic studies of nanodiamond composite films deposited by coaxial arc plasma. Appl. Phys. Lett. 116(4), 041601 (2020)
Zhang, J.M., et al.: High rate capability electrode from a ternary composite of nanodiamonds/reduced graphene oxide@ PANI for electrochemical capacitors. Chem. Phys. 526, 110461 (2019)
Krueger, A., Williams, O.A.: The chemistry of nanodiamond. Rsc Nanosci. Nanotechnol. 2014, 49–88 (2014)
Wang, H., Cui, Y.: Nanodiamonds for energy. Carbon Energy 1(1), 13–18 (2019)
Kausar, A.: Review on conducting polymer/nanodiamond nanocomposites: essences and functional performance. J. Plast. Film Sheeting 35(4), 331–353 (2019)
Nuzzo, R.: Front Matter (2014)
Siuzdak, K., Bogdanowicz, R.: Nano-engineered diamond-based materials for supercapacitor electrodes: a review. Energ. Technol. 6(2), 223–237 (2018)
Yang, N., Foord, J.S., Jiang, X.: Diamond electrochemistry at the nanoscale: a review. Carbon 99, 90–110 (2016)
Kraft, A.: Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci 2(5), 355–385 (2007)
Yu, S., Yang, N., Jiang, X., Zhang, W., Liu, S.: Conductive diamond for electrochemical energy applications. In: Yang, N., Zhao, G., Foord, J. (eds.) Nanocarbon Electrochemistry (2020). https://doi.org/10.1002/9781119468288.ch6
Siyu, Y., et al.: High-performance supercabatteries using graphite@ diamond nano-needle capacitor electrodes and redox electrolytes. Nanoscale 11(38), 17939–17946 (2019)
da Silva, L.M., et al. Constituent material influence on the electrochemical performance and supercapacitance of PAni/diamond/CF composite. Mater. Sci. Eng B 228, 249–260 (2018)
Gao, F., Nebel, C.E.: Diamond-based supercapacitors: realization and properties. ACS Appl. Mater. Interfaces. 8(42), 28244–28254 (2016)
Almeida, E.C., Diniz, A.V., Trava-Airoldi, V.J., Ferreira, N.G.: Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations. Thin Solid Films 485(1–2), 241–246 (2005)
Almeida, E.C., Trava-Airoldi, V.J., Ferreira, N.G., Rosolen, J.M.: Electrochemical insertion of lithium into a doped diamond film grown on carbon felt substrates. Diam. Relat. Mater. 14(10), 1673–1677 (2005)
Ferreira, N.G., Silva, L.L.G., Corat, E.J.: Electrochemical activity of boron-doped diamond electrodes grown on carbon fiber cloths. Diam. Relat. Mater. 11(3–6), 657–661 (2002)
Hian, L.C., et al.: Nanodiamond thin films on titanium substrates: growth and electrochemical properties. J. Electrochem. Soc. 150(1), E59 (2002)
Almeida, E.C., Azevedo, A.F., Baldan, M.R., Braga, N.A., Rosolen, J.M., Ferreira, N.G.: Nanocrystalline diamond/carbon felt as a novel composite for electrochemical storage energy in capacitor. Chem. Phys. Lett. 438(1–3), 47–52 (2007)
Raymundo-Pinero, E., Kierzek, K., Machnikowski, J., Béguin, F.: Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12), 2498–2507 (2006)
Portet, C., Yushin, G., Gogotsi, Y.: Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13), 2511–2518 (2007)
Fuertes, A.B., Pico, F., Rojo, J.M.: Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J. Power Sources 133(2), 329–336 (2004)
Hoffmann, R., et al.: Electrochemical hydrogen termination of boron-doped diamond. Appl. Phys. Lett. 97(5), 052103 (2010)
Qi, W., et al.: Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes. Carbon 68, 175–184 (2014)
Yang, J., Gunasekaran, S.: Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 51, 36–44 (2013)
Moreira, J.V.S., et al.: Diamond and carbon nanotube composites for supercapacitor devices. J. Electron. Mater. 46(2), 929–935 (2017)
Hébert, C., Mazellier, J.P., Scorsone, E., Mermoux, M., Bergonzo, P.: Boosting the electrochemical properties of diamond electrodes using carbon nanotube scaffolds. Carbon 71, 27–33 (2014)
Jiang, M.Y., et al.: Microstructure and electrochemical properties of nanocrystalline diamond and graphene hybridized films. J. Appl. Phys. 127(1), 015301 (2020)
Holt, K.B.: Electrochemistry of Nanodiamond Particles. pp. 128–150. Royal Society of Chemistry, Cambridge (2014)
Yang, N., et al.: Conductive diamond: synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 48(1), 157–204 (2019)
Simon, P., Yury, G.: Materials for electrochemical capacitors. In: Peter, R. (ed.) Nanoscience and technology: a collection of reviews from Nature journals, Macmillan, London, pp. 320–329 (2010)
Mandal, S., Bland, H.A., Cuenca, J.A., Snowball, M., Williams, O.A.: Superconducting boron doped nanocrystalline diamond on boron nitride ceramics. Nanoscale 11(21), 10266–10272 (2019)
Banerjee, D., et al.: Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient supercapacitor electrode. Nanoscale 12(18), 10117–10126 (2020)
Bhardwaj, K., Parvis, F.S., Wang, Y., Blanchard, G.J., Swain, G.M.: Effect of surface oxygen on the wettability and electrochemical properties of boron-doped nanocrystalline diamond electrodes in room-temperature ionic liquids. Langmuir 36(21), 5717–5729 (2020)
Spătaru, N., Zhang, X., Spătaru, T., Tryk, D.A., Fujishima, A.: Anodic deposition of RuO x∙ nH2O at conductive diamond films and conductive diamond powder for electrochemical capacitors. J. Electrochem. Soc. 155(1), D73 (2007)
Yu, S., et al.: Phosphorus-doped nanocrystalline diamond for supercapacitor application. ChemElectroChem 6(4), 1088–1093 (2019)
Kausar, A.: Mechanical, thermal, conductivity, and electrochemical behavior of poly (vinylidene fluoride)/poly (3, 4-ethylenedioxythiophene)/polyaniline-grafted-nanodiamond nanocomposite. J. Thermoplast. Compos. Mater. 33(5), 628–645 (2020)
Ansari, M.O., Alshahrie, A., Ansari, S.A.: “Facile route to porous polyaniline@ nanodiamond-graphene based nanohybrid structures for dc electrical conductivity retention and supercapacitor applications. J. Polym. Res. 26(3), 76 (2019)
da Silva, L.M., et al.: From electrode to device characterizations of polyaniline/micro and nanodiamond/carbon fiber as ternary composites applied as supercapacitor. J. Solid State Electrochem. 23(6), 1871–1885 (2019)
Karami, P., Khasraghi, S.S., Hashemi, M., Rabiei, S., Shojaei, A.: Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to properties and applications. Adv. Colloid Interface Sci. 269, 122–151 (2019). https://doi.org/10.1016/j.cis.2019.04.006
Gopalan, A.I., Lee, K-P., Komathi, S.: Bioelectrocatalytic determination of nitrite ions based on polyaniline grafted nanodiamond. Biosens. Bioelectron. 26(4), 1638–1643 (2010)
Miliaieva, D., Stehlik, S., Stenclova, P., Rezek, B.: Synthesis of polypyrrole on nanodiamonds with hydrogenated and oxidized surfaces. Phys. Status Solidi (a) 213(10), 2687–2692 (2016)
Shiomi, H.: Reactive ion etching of diamond in O2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes. Jpn. J. Appl. Phys. 36(12S), 7745 (1997)
Park, S., Lian, K., Gogotsi, Y.: Pseudocapacitive behavior of carbon nanoparticles modified by phosphomolybdic acid. J. Electrochem. Soc. 156(11), A921 (2009)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Zkria, A., Ali, A.M., Mahmoud, I., Abdelwahab, A., El Rouby, W.M.A., Yoshitake, T. (2022). Nanodiamond/Conducting Polymer Nanocomposites for Supercapacitor Applications. In: Shalan, A.E., Hamdy Makhlouf, A.S., Lanceros‐Méndez, S. (eds) Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-94319-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-94319-6_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94318-9
Online ISBN: 978-3-030-94319-6
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)