Skip to main content

Nanodiamond/Conducting Polymer Nanocomposites for Supercapacitor Applications

  • Chapter
  • First Online:
Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1383 Accesses

Abstract

Supercapacitors, known as electrochemical capacitors, are very attractive as energy storage devices due to their high-power density (up to 410 kW kg−1), their unique ability to undergo charge/discharge quickly and their long cycling life (that could reach 4105 cycles). Efforts have been dedicated to develop various carbon-based nanomaterials for energy storage, specially supercapacitors. Carbon-based materials and conducting polymers (ie; Polypyrrole and Polyaniline) are considered the most promising candidates for capacitive materials, as they offer high charging capacity through diverse mechanisms. Among these carbon-based materials are nano-crystalline diamond (NCD) films, which were widely studied during the past decades due to their special features like; short-range sp3 bonded carbon atoms and large surface to volume ratio. Artificial fabrication of NCD films was developed using various techniques like; high-pressure high-temperature (HPHT), chemical vapor deposition, plasma-discharge-stimulated, laser ablation,hot-filament technique,, and coaxial arc plasma deposition. Although carbon-based nanomaterials display good stability in energy storage applications, the capacitance values are yet limited by the microstructures within the materials; Therefore, their nanocomposites with conducting polymers provide higher performance and improved properties. This chapter aims to summarize and discuss the recent synthetic developments of nanocrystalline diamond/conducting polymer nanocomposites, and their applications to energy storage and supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(NCD):

Nanocrystalline diamond

(HPHT):

high-pressure high temperature

(NDs):

nanodiamonds

(CNTs):

carbon nanotubes

(CVD):

chemical vapor deposition

(CAPD):

coaxial arc plasma deposition

(DC):

direct current

(UNCD):

ultrananocrystalline diamond

(MPCVD):

Microwave plasma assisted chemical vapor deposition

(HFCVD):

Hot filament assisted chemical vapor deposition

(PLA):

pulsed laser ablation

(PVD):

Physical vapor deposition

(rGO):

reduced graphene oxide

(3D):

three-dimensional

(CNF):

Carbon nanofibers

(BDND):

boron doped ND

(BDD):

boron doped diamond

(RTILs):

Room-temperature ionic liquids

(OLC):

Onion-Like-Carbon

References

  1. Wang, S., Tongzhen, W., Zhiping, Q.: Supercapacitor energy storage technology and its application in renewable energy power generation system. In: Goswami, D.Y., Zhao, Y. (eds.) Proceedings of ISES World Congress 2007 (Vol. I–Vol. V), pp. 2805–2809. Springer, Heidelberg (2008)

    Google Scholar 

  2. Beardsall, J.C., Christopher, A.G., Moofik, A-T.: Energy storage systems: a review of the technology and its application in power systems. In: 2015 50th International Universities Power Engineering Conference (UPEC), pp. 1–6. IEEE (2015)

    Google Scholar 

  3. Becker, H.I.: Low voltage electrolytic capacitor. U.S. Patent 2,800,616, issued 23 July 1957

    Google Scholar 

  4. Boos, D.I.: U.S. Patent 3 536 963 (to Standard Oil, SO-HIO) (1970)

    Google Scholar 

  5. da Silva, L.M., et al.: Constituent material influence on the electrochemical performance and supercapacitance of PAni/diamond/CF composite. Mater. Sci. Eng. B 228, 249–260 (2018)

    Google Scholar 

  6. de Barros, S.D.T., Jaqueline, D.S., Elizabeth, R.L., Luiz, F.B.M.: Metal-catalyzed cross-coupling reactions with supported nanoparticles: recent developments and future directions. Catal. Rev. 58(4), 439–496 (2016)

    Google Scholar 

  7. Wang, F., Liu, J.: Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide. Nanoscale 5(24), 12375–12382 (2013)

    Article  CAS  Google Scholar 

  8. Decarli, P.S.: Shock wave synthesis of diamond and other phases. MRS Proc. Lib. Arch. 383, 21–31 (1995)

    Google Scholar 

  9. DeCarli, P.S., Jamieson, J.C.: Formation of diamond by explosive shock. Science 133(3467), 1821–1822 (1961)

    Article  CAS  Google Scholar 

  10. Turneaure, S.J., Surinder, M.S., Travis, J., Winey, J. M., Yogendra, M.: Gupta. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci. Adv. 3(10), eaao3561 (2017)

    Google Scholar 

  11. Bundy, F.P.: Direct conversion of graphite to diamond in static pressure apparatus. Science 137(3535), 1057–1058 (1962)

    Article  CAS  Google Scholar 

  12. Voronov, O.A., Tompa, G.S., Kear, B.H.: High pressure-high temperature device for making diamond materials. Diam. Mater. VII 25, 264–271 (2001)

    Google Scholar 

  13. Xiao, H.Y., Qin, Y.K., Li, S.S., Liang, Z.Z., Ma, H.A., Jia, X.P.: Effects of additive boron on HPHT diamond single crystals grown by TGM. Sci. China Phys. Mech. Astron. 54(12), 2186–2190 (2011)

    Article  CAS  Google Scholar 

  14. Huang, G.F., et al.: Effects of additive NaN 3 on the HPHT synthesis of large single crystal diamond grown by TGM. Sci. China Phys. Mech. Astron. 53(10), 1831–1835 (2010)

    Article  CAS  Google Scholar 

  15. Matsumoto, S., Sato, Y., Kamo, M., Setaka, N.: Vapor deposition of diamond particles from methane. Jpn. J. Appl. Phys. 21(4A), L183 (1982)

    Article  Google Scholar 

  16. Kamo, M., Sato, Y., Matsumoto, S., Setaka, N.: Diamond synthesis from gas phase in microwave plasma. J. Cryst. Growth 62(3), 642–644 (1983)

    Article  CAS  Google Scholar 

  17. Kurihara, K., Sasaki, K., Kawarada, M., Koshino, N.: High rate synthesis of diamond by dc plasma jet chemical vapor deposition. Appl. Phys. Lett. 52(6), 437–438 (1988)

    Article  CAS  Google Scholar 

  18. Kurihara, K.K., Sasaki, M.K., Goto, Y.: Applications of Diamond Films and Related Materials (1991)

    Google Scholar 

  19. Sumant, A.V., Orlando, H.A., Derrick, C.M.: Ultrananocrystalline diamond films with optimized dielectric properties for advanced RF MEMS capacitive switches. U.S. Patent 8,354,290, issued 15 January 2013

    Google Scholar 

  20. Auciello, O., Sumant, A.V.: Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices. Diam. Relat. Mater. 19(7–9), 699–718 (2010)

    Article  CAS  Google Scholar 

  21. Sumant, A.V., Auciello, O., Carpick, R.W., Srinivasan, S., Butler, J.E.: Ultrananocrystalline and nanocrystalline diamond thin films for MEMS/NEMS applications. MRS Bull. 35(4), 281–288 (2010)

    Article  CAS  Google Scholar 

  22. Schwander, M., Partes, K.: A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 20(9), 1287–1301 (2011)

    Article  CAS  Google Scholar 

  23. Gottlieb, S., Wöhrl, N., Schulz, S., Buck, V.: Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper. Springerplus 5(1), 568 (2016)

    Article  CAS  Google Scholar 

  24. Yan, G., et al.: Mechanical properties and wear behavior of multi-layer diamond films deposited by hot-filament chemical vapor deposition. Appl. Surf. Sci. 494, 401–411 (2019)

    Article  CAS  Google Scholar 

  25. Tang, Y., Li, Y.S., Yang, Q., Hirose, A.: Deposition and characterization of diamond coatings on WC-Co cutting tools with W/Al interlayer. Diam. Relat. Mater. 19(5–6), 496–499 (2010)

    Article  CAS  Google Scholar 

  26. Heaney, P.J., Sumant, A.V., Torres, C.D., Carpick, R.W., Pfefferkorn, F.E.: Diamond coatings for micro end mills: enabling the dry machining of aluminum at the micro-scale. Diam. Relat. Mater. 17(3), 223–233 (2008)

    Article  CAS  Google Scholar 

  27. Xiao, X., Birrell, J., Gerbi, J.E., Auciello, O., Carlisle, J.A.: Low temperature growth of ultrananocrystalline diamond. J. Appl. Phys. 96(4), 2232–2239 (2004)

    Article  CAS  Google Scholar 

  28. Tsugawa, K., et al.: Nanocrystalline diamond growth in a surface-wave plasma. Diam. Relat. Mater. 20(5–6), 833–838 (2011)

    Article  CAS  Google Scholar 

  29. Popov, C., Kulisch, W., Boycheva, S., Yamamoto, K., Ceccone, G., Koga, Y.: Structural investigation of nanocrystalline diamond/amorphous carbon composite films. Diam. Relat. Mater. 13(11–12), 2071–2075 (2004)

    Article  CAS  Google Scholar 

  30. Heiman, A., Gouzman, I., Christiansen, S.H., Strunk, H.P., Hoffman, A.: Nano-diamond films deposited by direct current glow discharge assisted chemical vapor deposition. Diam. Relat. Mater. 9(3–6), 866–871 (2000)

    Article  CAS  Google Scholar 

  31. Taylor, A.P., et al.: Precursor gas composition optimisation for large area boron doped nano-crystalline diamond growth by MW-LA-PECVD. Carbon 128, 164–171 (2018)

    Article  CAS  Google Scholar 

  32. Mehedi, H.-A., et al.: Low temperature and large area deposition of nanocrystalline diamond films with distributed antenna array microwave-plasma reactor. Diam. Relat. Mater. 47, 58–65 (2014)

    Article  CAS  Google Scholar 

  33. Muranaka, Y., Yamashita, H., Miyadera, H.: Worldwide status of low temperature growth of diamond. Diam. Relat. Mater. 3(4–6), 313–318 (1994)

    Article  CAS  Google Scholar 

  34. Das, D., Singh, R.N.: A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 52(1), 29–64 (2007)

    Article  CAS  Google Scholar 

  35. Hara, T., et al.: Consideration of diamond film growth on various orientation substrates of diamond in oxygen and hydrogen atmospheres by reactive pulsed laser deposition. Diam. Relat. Mater. 13(4–8), 622–626 (2004)

    Article  CAS  Google Scholar 

  36. Yoshitake, T., et al.: Structural and physical characteristics of ultrananocrystalline diamond/hydrogenated amorphous carbon composite films deposited using a coaxial arc plasma gun. Jpn. J. Appl. Phys. 49(1R), 015503 (2010)

    Article  CAS  Google Scholar 

  37. Ogale, S.B., et al.: Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces. Phys. Rev. B 36(16), 8237–8250 (1987)

    Article  CAS  Google Scholar 

  38. Polo, M.C., Cifre, J., Sánchez, G., Aguiar, R., Varela, M., Esteve, J.: Pulsed laser deposition of diamond from graphite targets. Appl. Phys. Lett. 67(4), 485–487 (1995)

    Article  CAS  Google Scholar 

  39. Amans, D., et al.: Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18(2–3), 177–180 (2009)

    Article  CAS  Google Scholar 

  40. Wang, J.B., Zhang, C.Y., Zhong, X.L., Yang, G.W.: Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid–solid interfacial reaction. Chem. Phys. Lett. 361(1–2), 86–90 (2002)

    Article  CAS  Google Scholar 

  41. Yoshitake, T., Nishiyama, T., Aoki, H., Suizu, K., Takahashi, K., Nagayama, K.: The effects of substrate temperature and laser wavelength on the formation of carbon thin films by pulsed laser deposition. Diam. Relat. Mater. 8(2–5), 463–467 (1999)

    Article  CAS  Google Scholar 

  42. Hanada, K., Yoshitake, T., Nishiyama, T., Nagayama, K.: Time-resolved spectroscopic observation of deposition processes of ultrananocrystalline diamond/amorphous carbon composite films by using a coaxial arc plasma gun. Jpn. J. Appl. Phys. 49(8), 08JF09 (2010)

    Article  CAS  Google Scholar 

  43. Ali, A.M., Egiza, M., Murasawa, K., Fukui, Y., Gonda, H., Sakurai, M., Yoshitake, T.: Negative bias effects on deposition and mechanical properties of ultrananocrystalline diamond/amorphous carbon composite films deposited on cemented carbide substrates by coaxial arc plasma. Diam. Relat. Mater. 96, 67–73 (2019)

    Article  CAS  Google Scholar 

  44. Zkria, A., Gima, H., Shaban, M., Yoshitake, T.: Electrical characteristics of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition Appl. Phys. Express 8, 095101 (2015)

    Google Scholar 

  45. Katamune, Y., Ohmagari, S., Al-Riyami, S., Takagi, S., Shaban, M., Yoshitake, T.: Heterojunction diodes comprising p-type ultrananocrystalline diamond films prepared by coaxial arc plasma deposition and n-type silicon substrates. Jpn. J. Appl. Phys. 52, 065801 (2013)

    Google Scholar 

  46. Zkria, A., Abubakr, E., Egiza, M., Haque, A., Narayan, J., Yoshitake, T.: Structural evolution of laser-irradiated ultrananocrystalline diamond/amorphous carbon composite films prepared by coaxial arc plasma. Appl. Phys. Express 13(10), 105503 (2020)

    Google Scholar 

  47. Naragino, H., Tominaga, A., Hanada, K., Yoshitake, T.: Synthesis method for ultra-nanocrystalline diamond in powder employing a coaxial arc plasma gun. Appl. Phys. Express 8(7), 075101 (2015)

    Google Scholar 

  48. Ali, M.A., Deckert-Gaudig, T., Egiza, M., Deckert, V., Yoshitake, T.: Near-and far-field Raman spectroscopic studies of nanodiamond composite films deposited by coaxial arc plasma. Appl. Phys. Lett. 116(4), 041601 (2020)

    Google Scholar 

  49. Zhang, J.M., et al.: High rate capability electrode from a ternary composite of nanodiamonds/reduced graphene oxide@ PANI for electrochemical capacitors. Chem. Phys. 526, 110461 (2019)

    Google Scholar 

  50. Krueger, A., Williams, O.A.: The chemistry of nanodiamond. Rsc Nanosci. Nanotechnol. 2014, 49–88 (2014)

    Article  Google Scholar 

  51. Wang, H., Cui, Y.: Nanodiamonds for energy. Carbon Energy 1(1), 13–18 (2019)

    Article  Google Scholar 

  52. Kausar, A.: Review on conducting polymer/nanodiamond nanocomposites: essences and functional performance. J. Plast. Film Sheeting 35(4), 331–353 (2019)

    Article  CAS  Google Scholar 

  53. Nuzzo, R.: Front Matter (2014)

    Google Scholar 

  54. Siuzdak, K., Bogdanowicz, R.: Nano-engineered diamond-based materials for supercapacitor electrodes: a review. Energ. Technol. 6(2), 223–237 (2018)

    Article  CAS  Google Scholar 

  55. Yang, N., Foord, J.S., Jiang, X.: Diamond electrochemistry at the nanoscale: a review. Carbon 99, 90–110 (2016)

    Article  CAS  Google Scholar 

  56. Kraft, A.: Doped diamond: a compact review on a new, versatile electrode material. Int. J. Electrochem. Sci 2(5), 355–385 (2007)

    CAS  Google Scholar 

  57. Yu, S., Yang, N., Jiang, X., Zhang, W., Liu, S.: Conductive diamond for electrochemical energy applications. In: Yang, N., Zhao, G., Foord, J. (eds.) Nanocarbon Electrochemistry (2020). https://doi.org/10.1002/9781119468288.ch6

  58. Siyu, Y., et al.: High-performance supercabatteries using graphite@ diamond nano-needle capacitor electrodes and redox electrolytes. Nanoscale 11(38), 17939–17946 (2019)

    Google Scholar 

  59. da Silva, L.M., et al. Constituent material influence on the electrochemical performance and supercapacitance of PAni/diamond/CF composite. Mater. Sci. Eng B 228, 249–260 (2018)

    Google Scholar 

  60. Gao, F., Nebel, C.E.: Diamond-based supercapacitors: realization and properties. ACS Appl. Mater. Interfaces. 8(42), 28244–28254 (2016)

    Article  CAS  Google Scholar 

  61. Almeida, E.C., Diniz, A.V., Trava-Airoldi, V.J., Ferreira, N.G.: Electrochemical characterization of doped diamond-coated carbon fibers at different boron concentrations. Thin Solid Films 485(1–2), 241–246 (2005)

    Article  CAS  Google Scholar 

  62. Almeida, E.C., Trava-Airoldi, V.J., Ferreira, N.G., Rosolen, J.M.: Electrochemical insertion of lithium into a doped diamond film grown on carbon felt substrates. Diam. Relat. Mater. 14(10), 1673–1677 (2005)

    Article  CAS  Google Scholar 

  63. Ferreira, N.G., Silva, L.L.G., Corat, E.J.: Electrochemical activity of boron-doped diamond electrodes grown on carbon fiber cloths. Diam. Relat. Mater. 11(3–6), 657–661 (2002)

    Article  CAS  Google Scholar 

  64. Hian, L.C., et al.: Nanodiamond thin films on titanium substrates: growth and electrochemical properties. J. Electrochem. Soc. 150(1), E59 (2002)

    Google Scholar 

  65. Almeida, E.C., Azevedo, A.F., Baldan, M.R., Braga, N.A., Rosolen, J.M., Ferreira, N.G.: Nanocrystalline diamond/carbon felt as a novel composite for electrochemical storage energy in capacitor. Chem. Phys. Lett. 438(1–3), 47–52 (2007)

    Article  CAS  Google Scholar 

  66. Raymundo-Pinero, E., Kierzek, K., Machnikowski, J., Béguin, F.: Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44(12), 2498–2507 (2006)

    Article  CAS  Google Scholar 

  67. Portet, C., Yushin, G., Gogotsi, Y.: Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45(13), 2511–2518 (2007)

    Google Scholar 

  68. Fuertes, A.B., Pico, F., Rojo, J.M.: Influence of pore structure on electric double-layer capacitance of template mesoporous carbons. J. Power Sources 133(2), 329–336 (2004)

    Article  CAS  Google Scholar 

  69. Hoffmann, R., et al.: Electrochemical hydrogen termination of boron-doped diamond. Appl. Phys. Lett. 97(5), 052103 (2010)

    Google Scholar 

  70. Qi, W., et al.: Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes. Carbon 68, 175–184 (2014)

    Google Scholar 

  71. Yang, J., Gunasekaran, S.: Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 51, 36–44 (2013)

    Article  CAS  Google Scholar 

  72. Moreira, J.V.S., et al.: Diamond and carbon nanotube composites for supercapacitor devices. J. Electron. Mater. 46(2), 929–935 (2017)

    Article  CAS  Google Scholar 

  73. Hébert, C., Mazellier, J.P., Scorsone, E., Mermoux, M., Bergonzo, P.: Boosting the electrochemical properties of diamond electrodes using carbon nanotube scaffolds. Carbon 71, 27–33 (2014)

    Article  CAS  Google Scholar 

  74. Jiang, M.Y., et al.: Microstructure and electrochemical properties of nanocrystalline diamond and graphene hybridized films. J. Appl. Phys. 127(1), 015301 (2020)

    Article  CAS  Google Scholar 

  75. Holt, K.B.: Electrochemistry of Nanodiamond Particles. pp. 128–150. Royal Society of Chemistry, Cambridge (2014)

    Google Scholar 

  76. Yang, N., et al.: Conductive diamond: synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 48(1), 157–204 (2019)

    Article  CAS  Google Scholar 

  77. Simon, P., Yury, G.: Materials for electrochemical capacitors. In: Peter, R. (ed.) Nanoscience and technology: a collection of reviews from Nature journals, Macmillan, London, pp. 320–329 (2010)

    Google Scholar 

  78. Mandal, S., Bland, H.A., Cuenca, J.A., Snowball, M., Williams, O.A.: Superconducting boron doped nanocrystalline diamond on boron nitride ceramics. Nanoscale 11(21), 10266–10272 (2019)

    Article  CAS  Google Scholar 

  79. Banerjee, D., et al.: Single-step grown boron doped nanocrystalline diamond-carbon nanograss hybrid as an efficient supercapacitor electrode. Nanoscale 12(18), 10117–10126 (2020)

    Google Scholar 

  80. Bhardwaj, K., Parvis, F.S., Wang, Y., Blanchard, G.J., Swain, G.M.: Effect of surface oxygen on the wettability and electrochemical properties of boron-doped nanocrystalline diamond electrodes in room-temperature ionic liquids. Langmuir 36(21), 5717–5729 (2020)

    Article  CAS  Google Scholar 

  81. Spătaru, N., Zhang, X., Spătaru, T., Tryk, D.A., Fujishima, A.: Anodic deposition of RuO x∙ nH2O at conductive diamond films and conductive diamond powder for electrochemical capacitors. J. Electrochem. Soc. 155(1), D73 (2007)

    Article  CAS  Google Scholar 

  82. Yu, S., et al.: Phosphorus-doped nanocrystalline diamond for supercapacitor application. ChemElectroChem 6(4), 1088–1093 (2019)

    Article  CAS  Google Scholar 

  83. Kausar, A.: Mechanical, thermal, conductivity, and electrochemical behavior of poly (vinylidene fluoride)/poly (3, 4-ethylenedioxythiophene)/polyaniline-grafted-nanodiamond nanocomposite. J. Thermoplast. Compos. Mater. 33(5), 628–645 (2020)

    Article  CAS  Google Scholar 

  84. Ansari, M.O., Alshahrie, A., Ansari, S.A.: “Facile route to porous polyaniline@ nanodiamond-graphene based nanohybrid structures for dc electrical conductivity retention and supercapacitor applications. J. Polym. Res. 26(3), 76 (2019)

    Google Scholar 

  85. da Silva, L.M., et al.: From electrode to device characterizations of polyaniline/micro and nanodiamond/carbon fiber as ternary composites applied as supercapacitor. J. Solid State Electrochem. 23(6), 1871–1885 (2019)

    Google Scholar 

  86. Karami, P., Khasraghi, S.S., Hashemi, M., Rabiei, S., Shojaei, A.: Polymer/nanodiamond composites - a comprehensive review from synthesis and fabrication to properties and applications. Adv. Colloid Interface Sci. 269, 122–151 (2019). https://doi.org/10.1016/j.cis.2019.04.006

    Article  CAS  Google Scholar 

  87. Gopalan, A.I., Lee, K-P., Komathi, S.: Bioelectrocatalytic determination of nitrite ions based on polyaniline grafted nanodiamond. Biosens. Bioelectron. 26(4), 1638–1643 (2010)

    Google Scholar 

  88. Miliaieva, D., Stehlik, S., Stenclova, P., Rezek, B.: Synthesis of polypyrrole on nanodiamonds with hydrogenated and oxidized surfaces. Phys. Status Solidi (a) 213(10), 2687–2692 (2016)

    Google Scholar 

  89. Shiomi, H.: Reactive ion etching of diamond in O2 and CF4 plasma, and fabrication of porous diamond for field emitter cathodes. Jpn. J. Appl. Phys. 36(12S), 7745 (1997)

    Article  CAS  Google Scholar 

  90. Park, S., Lian, K., Gogotsi, Y.: Pseudocapacitive behavior of carbon nanoparticles modified by phosphomolybdic acid. J. Electrochem. Soc. 156(11), A921 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdelrahman Zkria or Waleed M. A. El Rouby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zkria, A., Ali, A.M., Mahmoud, I., Abdelwahab, A., El Rouby, W.M.A., Yoshitake, T. (2022). Nanodiamond/Conducting Polymer Nanocomposites for Supercapacitor Applications. In: Shalan, A.E., Hamdy Makhlouf, A.S., Lanceros‐Méndez, S. (eds) Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-94319-6_32

Download citation

Publish with us

Policies and ethics