Skip to main content

A Primer on Phage-Bacterium Antagonistic Coevolution

  • 99 Accesses

Abstract

The primary emphasis of this monograph has been on how one population, particularly of a given phage type, can drive the evolution of a second population, particularly of a given bacterium type. Less simplisitic, instead two populations can drive each other’s evolution and thereby co-evolve. When two populations are coevolving in a conflicting manner, we can describe this as antagonistic coevolution. It can be more straightforward, however, to envision two cooperating populations coevolving, e.g., an uninduced prophage and its host, and for them to coevolve with substantial exclusivity. With antagonistic coevolution, by contrast, there often can be little guarantee that the antagonistic interactions will be limited to between only two populations. Still, this chapter considers some basics regarding antagonistic coevolution as in principle this could occur between only one particular, especially strictly lytic phage, and one particular at least initially susceptible bacterium. The phage will tend to evolve toward having a greater negative impact on the bacterial population while the bacterium will tend to evolve toward interfering with that phage-mediated negative impact. More generally, bacterial variants will tend to be selected toward being less negatively affected by phages while phages will tend to be selected to overcome those bacterial tendencies. There can, however, be a number real-world complications on such processes and their interpretation, as this chapter considers.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-94309-7_25
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-94309-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 25.1
Fig. 25.2

References

  • Abedon ST (2011) Envisaging bacteria as phage targets. Bacteriophage 1:228–230

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2012) Thinking about microcolonies as phage targets. Bacteriophage 2:200–204

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D (2011) Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature (London) 474:604–608

    CAS  CrossRef  Google Scholar 

  • Berryhill BA, Huseby DL, McCall IC, Hughes D, Levin BR (2021) Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 118:e2008007118

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Blazanin M, Turner PE (2021) Community context matters for bacteria-phage ecology and evolution. ISME J 15:3119–3128

    CAS  PubMed  CrossRef  Google Scholar 

  • Bohannan BJM, Lenski RE (1997) Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78:2303–2315

    CrossRef  Google Scholar 

  • Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377

    CrossRef  Google Scholar 

  • Bouchard JD, Moineau S (2000) Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology 270:65–75

    CAS  PubMed  CrossRef  Google Scholar 

  • Brockhurst MA, Koskella B (2013) Experimental coevolution of species interactions. Trends Ecol Evol 28:367–375

    PubMed  CrossRef  Google Scholar 

  • Brockhurst MA, Koskella B, Zhang QG (2021) Bacteria-phage antagonistic coevolution and the implications for phage therapy. In: Harper DR, Abedon ST, Burrowes BH, McConville M (eds) Bacteriophages: biology, technology, therapy. Springer, New York, pp 231–251

    CrossRef  Google Scholar 

  • Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc Lond B Biol Sci 269:931–936

    CrossRef  Google Scholar 

  • Buckling A, Wei Y, Massey RC, Brockhurst MA, Hochberg ME (2006) Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proc R Soc Lond B Biol Sci 273:45–49

    Google Scholar 

  • Burmeister AR, Sullivan RM, Gallie J, Lenski RE (2021) Sustained coevolution of phage lambda and Escherichia coli involves inner- as well as outer-membrane defences and counter-defences. Microbiology 167:001063

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Campbell A (1961) Conditions for the existence of bacteriophages. Evolution 15:153–165

    CrossRef  Google Scholar 

  • Chan BK, Abedon ST (2012) Bacteriophage adaptation, with particular attention to issues of phage host range. In: Quiberoni A, Reinheimer J (eds) Bacteriophages in dairy processing. Nova Science Publishers, Hauppauge, pp 25–52

    Google Scholar 

  • d’Herelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. C R Acad Sci Ser D 165:373–375

    Google Scholar 

  • d’Herelle F (2007) On an invisible microbe antagonistic toward dysenteric bacilli: brief note by Mr. F. D’Herelle, presented by Mr Roux. Res Microbiol 158:553–554

    PubMed  CrossRef  Google Scholar 

  • d’Herelle F (2011) On an invisible microbe antagonistic to dysentery bacilli. Note by M. F. d’Herelle, presented by M. Roux. Comptes Rendus Academiedes sciences 1917; 165:373-5. Bacteriophage 1:3–5

    CrossRef  Google Scholar 

  • Dąbrowska K, Abedon ST (2019) Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol Mol Biol Rev 83:e00012–e00019

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE (2019) Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol 27:51–63

    PubMed  CrossRef  CAS  Google Scholar 

  • De Sordi L, Khanna V, Debarbieux L (2017) The gut microbiota facilitates drifts in the genetic diversity and infectivity of bacterial viruses. Cell Host Microbe 22:801–808

    PubMed  CrossRef  CAS  Google Scholar 

  • De Sordi L, Lourenco M, Debarbieux L (2019) "I will survive": a tale of bacteriophage-bacteria coevolution in the gut. Gut Microbes 10:92–99

    PubMed  CrossRef  CAS  Google Scholar 

  • Dennehy JJ (2012) What can phages tell us about host-pathogen coevolution? Int J Evol Biol 2012:396165

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Dennehy JJ, Abedon ST (2021) Adsorption: phage acquisition of bacteria. In: Harper D, Abedon ST, Burrowes BH, McConville M (eds) Bacteriophages: biology, technology, therapy. Springer, New York, pp 93–117

    CrossRef  Google Scholar 

  • Dickey J, Perrot V (2019) Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One 14:e0209390

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Drexler K, Riede I, Montag D, Eschbach ML, Henning U (1989) Receptor specificity of the Escherichia coli T-even phage Ox2. Mutational alterations in host range mutants. J Mol Biol 207:797–803

    CAS  PubMed  CrossRef  Google Scholar 

  • Gómez P, Ashby B, Buckling A (2015) Population mixing promotes arms race host-parasite coevolution. Proc Biol Sci 282:20142297

    PubMed  PubMed Central  Google Scholar 

  • Gómez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science (New York, NY) 332:106–109

    CrossRef  CAS  Google Scholar 

  • Gurney J, Pleska M, Levin BR (2019) Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas. Philos Trans R Soc Lond Ser B Biol Sci 374:20180096

    CAS  CrossRef  Google Scholar 

  • Hall AR, Scanlan PD, Buckling A (2011) Bacteria-phage coevolution and the emergence of generalist pathogens. Am Nat 177:44–53

    PubMed  CrossRef  Google Scholar 

  • Hampton HG, Watson BNJ, Fineran PC (2020) The arms race between bacteria and their phage foes. Nature (London) 577:327–336

    CAS  CrossRef  Google Scholar 

  • Henning U, Hashemolhosseini S (1994) Receptor recognition by T-even type coliphages. In: Karam JD, Eiserling FA, Black LW (eds) The molecular biology of bacteriophage T4. ASM Press, Washington, DC, pp 291–298

    Google Scholar 

  • Horne MT (1970) Coevolution of Escherichia coli and bacteriophages in chemostat culture. Science (New York, N Y ) 168:992–993

    CAS  CrossRef  Google Scholar 

  • Hyman P (2019) Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel) 12:35

    CAS  CrossRef  Google Scholar 

  • Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    CAS  PubMed  CrossRef  Google Scholar 

  • Janzen DH (1980) What is coevolution? Evolution 34:611–612

    PubMed  CrossRef  Google Scholar 

  • Koskella B, Lin DM, Buckling A, Thompson JN (2012) The costs of evolving resistance in heterogeneous parasite environments. Proc Biol Sci 279:1896–1903

    PubMed  Google Scholar 

  • Koskella B, Meaden S (2013) Understanding bacteriophage specificity in natural microbial communities. Viruses 5:806–823

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Lenski RE (1984) Coevolution of bacteria and phage: are there endless cycles of bacterial defences and phage counterdefences? J Theor Biol 108:319–325

    CAS  PubMed  CrossRef  Google Scholar 

  • Lenski RE (1988a) Dynamics of interactions between bacteria and virulent bacteriophage. Adv Microbial Ecol 10:1–44

    CAS  CrossRef  Google Scholar 

  • Lenski RE (1988b) Experimental studies of pleiotropy and epistasis in Escherichia coli. II. Compensation for maladaptive effects associated with resistance to virus T4. Evolution 42:433–440

    PubMed  Google Scholar 

  • Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am Nat 125:585–602

    CrossRef  Google Scholar 

  • Levin BR (2010) Nasty viruses, costly plasmids, population dynamics, and the conditions for establishing and maintaining CRISPR-mediated adaptive immunity in bacteria. PLoS Genet 6:e1001171

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Levin BR, Lenski RE (1983) Coevolution in bacteria and their viruses and plasmids. In: Futuyma DJ, Slatkin M (eds) Coevolution. Sinauer Associates, Inc., Sunderland, pp 99–127

    Google Scholar 

  • Meyer JR, Dobias DT, Weitz JS, Barrick JE, Quick RT, Lenski RE (2012) Repeatability and contingency in the evolution of a key innovation in phage lambda. Science (New York, N Y ) 335:428–432

    CAS  CrossRef  Google Scholar 

  • Morgan AD, Quigley BJ, Brown SP, Buckling A (2012) Selection on non-social traits limits the invasion of social cheats. Ecol Lett 15:841–846

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Morris C (1885) Attack and defense as agents in animal evolution. In: Proceedings of the Academy of Natural Sciences of Philadelphia, pp 385–392

    Google Scholar 

  • Obeng N, Pratama AA, Elsas JD (2016) The significance of mutualistic phages for bacterial ecology and evolution. Trends Microbiol 24:440–449

    CAS  PubMed  CrossRef  Google Scholar 

  • Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, Quail M, Smith F, Walker D, Libberton B, Fenton A, Hall N, Brockhurst MA (2010) Antagonistic coevolution accelerates molecular evolution. Nature (London) 464:275–278

    CAS  CrossRef  Google Scholar 

  • Prangishvili D (2013) The wonderful world of archaeal viruses. Ann Rev Microbiol 67:565–585

    CAS  CrossRef  Google Scholar 

  • Rodin SN, Ratner VA (1983a) Some theoretical aspects of protein coevolution in the ecosystem of “phage-bacteria”. I. The probelm. J Theor Biol 100:185–195

    CAS  CrossRef  Google Scholar 

  • Rodin SN, Ratner VA (1983b) Some theoretical aspects of protein coevolution in the ecosystem “phage-bacteria”. II. The deterministic model of microevolution. J Theor Biol 100:197–210

    CAS  CrossRef  Google Scholar 

  • Ross A, Ward S, Hyman P (2016) More is better: selecting for broad host range bacteriophages. Front Microbiol 7:1352

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Saez MD, Visram Z, Mutti M, Restrepo-Cordoba M, Hartmann S, Kremers AI, Tisakova L, Schertler S, Wittmann J, Kalali B, Monecke S, Ehricht R, Resch G, Corsini L (2021) Epsilon(2)-phages are naturally bred and have a vastly improved host range in Staphylococcus aureus over wild type phages. Pharmaceuticals (Basel) 14:325

    CrossRef  CAS  Google Scholar 

  • Scanlan PD, Buckling A, Hall AR (2015) Experimental evolution and bacterial resistance: (co)evolutionary costs and trade-offs as opportunities in phage therapy research. Bacteriophage 5:e1050153

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Stent GS (1963) Molecular biology of bacterial viruses. WH Freeman and Co., San Francisco

    Google Scholar 

  • Summers WC (1999) Felix d’Herelle and the origins of molecular biology. Yale University Press, New Haven

    Google Scholar 

  • Thingstad TF, Bratbak G, Heldal M (2008) Aquatic phage ecology. In: Abedon ST (ed) Bacteriophage ecology. Cambridge University Press, Cambridge, pp 251–280

    CrossRef  Google Scholar 

  • Weitz JS, Hartman H, Levin SA (2005) Coevolutionary arms races between bacteria and bacteriophage. Proc Natl Acad Sci U S A 102:9535–9540

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Young JPW, Levin BR (1993) Adaptation in bacteria: unanswered ecological and evolutionary questions about well-studied molecules. In: Berry RL, Crawford TJ, Hewitt GM (eds) Genes in ecology. Blackwell Scientific Publications, London, pp 169–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Abedon, S.T. (2022). A Primer on Phage-Bacterium Antagonistic Coevolution. In: Bacteriophages as Drivers of Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-94309-7_25

Download citation