Skip to main content

Frequency-Dependent Selection in Light of Phage Exposure

  • 90 Accesses

Abstract

A special form of natural selection involves the evolutionary fitness of different alleles or genotypes varying with their frequencies within populations. Thus, fitness may be higher when an allele is rarer or instead fitness may be lower when an allele rarer. The resulting frequency-dependent selection can be stabilizing versus disruptive, respectively, in either case of polymorphisms: Either rarer alleles are protected by natural selection from being driven to extinction or instead rarer alleles are driven to extinction by natural selection (not just genetic drift) particularly as they become rarer. With frequency-dependent selection as driven by phages, I suggest that it often is not so much the frequency of bacterial alleles or genotypes that are most relevant but instead actual densities, that is, absolute bacterial prevalence rather than relative bacterial allele or genotype prevalence. Thus, either high concentrations of one genotype drives the extinction of a rarer genotype (disruptive) or instead a genotype by existing at a low concentration is protected from extinction (stabilizing). In this chapter, I also consider how thinking about these sorts of things evolutionarily versus ecologically can differ. I then describe what can be a purely ecological process that is similar to stabilizing frequency-dependent selection, i.e., killing the winner, and also how stabilizing frequency-dependent selection could result in Muller’s ratchet.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-94309-7_24
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-94309-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 24.1
Fig. 24.2
Fig. 24.3
Fig. 24.4

References

  • Abedon ST (2011) Envisaging bacteria as phage targets. Bacteriophage 1:228–230

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2012) Bacterial ‘immunity’ against bacteriophages. Bacteriophage 2:50–54

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2015) Ecology of anti-biofilm agents I. antibiotics versus bacteriophages. Pharmaceuticals (Basel) 8:525–558

    CAS  CrossRef  Google Scholar 

  • Abedon ST (2016) Phage therapy dosing: the problem(s) with multiplicity of infection (MOI). Bacteriophage 6:e1220348

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2017a) Active bacteriophage biocontrol and therapy on sub-millimeter scales towards removal of unwanted bacteria from foods and microbiomes. AIMS Microbiol 3:649–688

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2017b) Commentary: Communication between viruses guides lysis-lysogeny decisions. Front Microbiol 8:983

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2019) Look who’s talking: T-even phage lysis inhibition, the granddaddy of virus-virus intercellular communication research. Viruses 11:951

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST, LeJeune JT (2005) Why bacteriophage encode exotoxins and other virulence factors. Evol Bioinform Online 1:97–110

    CAS  CrossRef  Google Scholar 

  • Arber W, Linn S (1969) DNA modification and restriction. Annu Rev Biochem 38:467–500

    CAS  PubMed  CrossRef  Google Scholar 

  • Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D (2011) Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature (London) 474:604–608

    CAS  CrossRef  Google Scholar 

  • Berenstein D (1986) Prophage induction by ultraviolet light in Acinetobacter calcoaceticus. J Gen Microbiol 132:2633–2636

    CAS  PubMed  Google Scholar 

  • Blazanin M, Turner PE (2021) Community context matters for bacteria-phage ecology and evolution. ISME J 15:3119–3128

    CAS  PubMed  CrossRef  Google Scholar 

  • Bodmer WF, Bodmer JG (1978) Evolution and function of the HLA system. Br Med Bull 34:309–316

    CAS  PubMed  CrossRef  Google Scholar 

  • Bohannan BJM, Lenski RE (1997) Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78:2303–2315

    CrossRef  Google Scholar 

  • Breitbart M, Rohwer F, Abedon ST (2005) Phage ecology and bacterial pathogenesis. In: Waldor MK, Friedman DI, Adhya SL (eds) Phages: Their Role in Bacterial Pathogenesis and Biotechnology. ASM Press, Washington DC, pp 66–91

    Google Scholar 

  • Brown SP, Le Chat L, De Paepe M, Taddei F (2006) Ecology of microbial invasions: amplification allows virus carriers to invade more rapidly when rare. Curr Biol 16:2048–2052

    CAS  PubMed  CrossRef  Google Scholar 

  • Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 78:6324–6328

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chao L, Levin BR, Stewart FM (1977) A complex community in a simple habitat: an experimental study with bacteria and phage. Ecology 58:369–378

    CrossRef  Google Scholar 

  • Danis-Wlodarczyk K, Dąbrowska K, Abedon ST (2020) Phage therapy: the pharmacology of antibacterial viruses. Curr Issues Mol Biol 40:81–16

    PubMed  Google Scholar 

  • Diaz-Munoz SL, Koskella B (2014) Bacteria-phage interactions in natural environments. Adv Appl Microbiol 89:135–183

    PubMed  CrossRef  Google Scholar 

  • Harrison E, Brockhurst MA (2017) Ecological and evolutionary benefits of temperate phage: what does or doesn’t kill you makes you stronger. Bioessays 39:170012

    CrossRef  Google Scholar 

  • Hawlena H, Bashey F, Lively CM (2010) The evolution of spite: population structure and bacteriocin-mediated antagonism in two natural populations of Xenorhabdus bacteria. Evolution 64:3198–3204

    CAS  PubMed  CrossRef  Google Scholar 

  • Igler C, Abedon ST (2019) Commentary: A host-produced quorum-sensing autoinducer controls a phage lysis-lysogeny decision. Front Microbiol 10:1171

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jacquet S, Zhong X, Peduzzi P, Thingstad TF, Parikka KJ, Weinbauer MG (2018) Virus interactions in the aquatic world. In: Hyman P, Abedon ST (eds) Viruses of Microorganisms. Caister Academic Press, Norwich, pp 115–141

    Google Scholar 

  • Korona R, Levin BR (1993) Phage-mediated selection and the evolution and maintenance of restriction-modification. Evolution 47:556–575

    PubMed  CrossRef  Google Scholar 

  • Levin BR (1988) Frequency-dependent selection in bacterial populations. Philos Trans R Soc Lond Ser B Biol Sci 319:459–472

    CAS  Google Scholar 

  • Li XY, Lachnit T, Fraune S, Bosch TCG, Traulsen A, Sieber M (2017) Temperate phages as self-replicating weapons in bacterial competition. J R Soc Interface 14:20170563

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Migalska M, Sebastian A, Radwan J (2019) Major histocompatibility complex class I diversity limits the repertoire of T cell receptors. Proc Natl Acad Sci USA 116:5021–5026

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Petersen JL, Morris CR, Solheim JC (2003) Virus evasion of MHC class I molecule presentation. J Immunol 171:4473–4478

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodriguez-Brito B, Li L, Wegley L, Furlan M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pasic L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751

    PubMed  CrossRef  Google Scholar 

  • Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasiç L, Thingstad TF, Rohwer F, Mira A (2009) Explaining microbial population genomics through phage predation. Nat Rev Microbiol 7:828–836

    CAS  PubMed  CrossRef  Google Scholar 

  • Stewart FM, Levin BR (1984) The population biology of bacterial viruses: Why be temperate. Theor Pop Biol 26:93–117

    CAS  CrossRef  Google Scholar 

  • Thingstad TF, Bratbak G, Heldal M (2008) Aquatic phage ecology. In: Abedon ST (ed) Bacteriophage Ecology. Cambridge University Press, Cambridge, pp 251–280

    CrossRef  Google Scholar 

  • van Berkum P, Kotob SI, Basit HA, Salem S, Gewaily EM, Angle JS (1993) Genotypic diversity among strains of Bradyrhizobium japonicum belonging to serogroup 110. Appl Environ Microbiol 59:3130–3133

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Vasu K, Nagamalleswari E, Nagaraja V (2012) Promiscuous restriction is a cellular defense strategy that confers fitness advantage to bacteria. Proc Natl Acad Sci USA 109:E1287–E1293

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wangersky PJ (1978) Lotka-Volterra population models. Ann Rev Ecol Syst 9:189–218

    CrossRef  Google Scholar 

  • Weitz JS, Hartman H, Levin SA (2005) Coevolutionary arms races between bacteria and bacteriophage. Proc Natl Acad Sci USA 102:9535–9540

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Wiggins BA, Alexander M (1985) Minimum bacterial density for bacteriophage replication: implications for significance of bacteriophages in natural ecosystems. Appl Environ Microbiol 49:19–23

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Williams ML, LeJeune JT (2012) Phages and bacterial epidemiology. In: Hyman P, Abedon ST (eds) Bacteriophages in Health and Disease. CABI Press, Wallingford, pp 76–85

    CrossRef  Google Scholar 

  • Winter C, Bouvier T, Weinbauer MG, Thingstad TF (2010) Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited. Microbiol Mol Biol Rev 74:42–57

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Young JPW, Levin BR (1993) Adaptation in bacteria: unanswered ecological and evolutionary questions about well-studied molecules. In: Berry RL, Crawford TJ, Hewitt GM (eds) Genes in Ecology. Blackwell Scientific Publications, London, pp 169–192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Abedon, S.T. (2022). Frequency-Dependent Selection in Light of Phage Exposure. In: Bacteriophages as Drivers of Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-94309-7_24

Download citation