Skip to main content

Pleiotropic Costs of Phage Resistance

  • 82 Accesses

Abstract

With pleiotropies, a single gene is responsible for more than one phenotype. As a consequence, different alleles of a single gene can differ phenotypically in more than one way. Different alleles also can give rise to different phenotypes as measured under different conditions or at different times. As a result of these pleiotropies, alleles of a single gene can be associated with improvements in one associated phenotype but also a corresponding worsening of another phenotype. The two phenotypes controlled by this one gene in a sense thereby are antagonistic to each other, hence this situation being described as an antagonistic pleiotropy. In this chapter, we again consider bacterial mutation to resistance to bacteriophages, but instead of emphasizing the primary phenotype, i.e., the phage resistance phenotype, we instead consider secondary consequences of that resistance, which we measure in general terms as bacterial evolutionary fitness in the absence of selecting phages. Thus, improvements in bacterial fitness that are seen when phages are present (condition 1), that are a consequence of bacterial mutation to phage resistance, can be associated with corresponding declines in bacterial fitness as measured especially in the absence of these phages (condition 2).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-94309-7_22
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-94309-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 22.1

References

  • Abedon ST (2000) The murky origin of Snow White and her T-even dwarfs. Genetics 155:481–486

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Abedon ST (2017) Bacteriophage clinical use as antibactertial “drugs”: utility, precedent. Microbiol Spectr 5:BAD-0003-2016

    CrossRef  Google Scholar 

  • Abedon ST, Danis-Wlodarczyk K, Alves DR (2021) Phage therapy in the 21st century: evidence of phage-mediated clinical efficacy. Pharmaceuticals (Basel) 14:1157

    CrossRef  Google Scholar 

  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM (2011) Phage treatment of human infections. Bacteriophage 1:66–85

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Alseth EO, Pursey E, Lujan AM, McLeod I, Rollie C, Westra ER (2019) Bacterial biodiversity drives the evolution of CRISPR-based phage resistance. Nature (London) 574:549–552

    CAS  CrossRef  Google Scholar 

  • Altamirano FG, Forsyth JH, Patwa R, Kostoulias X, Trim M, Subedi D, Archer SK, Morris FC, Oliveira C, Kielty L, Korneev D, O’Bryan MK, Lithgow TJ, Peleg AY, Barr JJ (2021) Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat Microbiol 6:157–161

    CrossRef  CAS  Google Scholar 

  • Alves D, Danis-Wlodarczyk K, Abedon ST (2023) Phage therapy: a clinician’s guide. In: Liu D (ed) Handbook of Molecular Biology. CRC Press, Boca Raton

    Google Scholar 

  • Avrani S, Wurtzel O, Sharon I, Sorek R, Lindell D (2011) Genomic island variability facilitates Prochlorococcus-virus coexistence. Nature (London) 474:604–608

    CAS  CrossRef  Google Scholar 

  • Azam AH, Tanji Y (2019) Bacteriophage-host arm race: an update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Appl Microbiol Biotechnol 103:2121–2131

    CAS  PubMed  CrossRef  Google Scholar 

  • Bohannan BJM, Lenski RE (2000) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol Lett 3:362–377

    CrossRef  Google Scholar 

  • Bohannan BJM, Travisano M, Lenski RE (1999) Epistatic interactions can lower the cost of resistance to multiple consumers. Evolution 53:292–295

    PubMed  CrossRef  Google Scholar 

  • Buckling A, Wei Y, Massey RC, Brockhurst MA, Hochberg ME (2006) Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proc R Soc Lond B Biol Sci 273:45–49

    Google Scholar 

  • Burmeister AR, Fortier A, Roush C, Lessing AJ, Bender RG, Barahman R, Grant R, Chan BK, Turner PE (2020) Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc Natl Acad Sci U S A 117:11207–11216

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chan BK, Sistrom M, Wertz JE, Kortright KE, Narayan D, Turner PE (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 6:26717

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D (2018) Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Pub Health 1:60–66

    CrossRef  Google Scholar 

  • Demerec M, Fano U (1945) Bacteriophage-resistant mutants in Escherichia coli. Genetics 30:119–136

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • d’Herelle F (1922) The bacteriophage: its role in immunity. Williams and Wilkins Co./Waverly Press, Baltimore

    CrossRef  Google Scholar 

  • Dykhuizen DE (1990) Experimental studies of natural selection in bacteria. Ann Rev Ecol Syst 21:373–398

    CrossRef  Google Scholar 

  • Elena SF, Sanjuán R (2003) Climb every mountain? Science (New York, N Y ) 302:2074–2075

    CAS  CrossRef  Google Scholar 

  • Goldhill DH, Turner PE (2014) The evolution of life history trade-offs in viruses. Curr Opin Virol 8:79–84

    PubMed  CrossRef  Google Scholar 

  • Gómez P, Buckling A (2011) Bacteria-phage antagonistic coevolution in soil. Science (New York, N Y ) 332:106–109

    CrossRef  CAS  Google Scholar 

  • Gurney J, Brown SP, Kaltz O, Hochberg ME (2020) Steering phages to combat bacterial pathogens. Trends Microbiol 28:85–94

    CAS  PubMed  CrossRef  Google Scholar 

  • Hall AR, De VD, Friman VP, Pirnay JP, Buckling A (2012) Effects of sequential and simultaneous application of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in waxmoth larvae. Appl Environ Microbiol 78:5646–5652

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hyman P (2017) Phage receptor. In: Reference module in life sciences. Elsevier, Amsterdam

    Google Scholar 

  • Koskella B, Lin DM, Buckling A, Thompson JN (2012) The costs of evolving resistance in heterogeneous parasite environments. Proc Biol Sci 279:1896–1903

    PubMed  Google Scholar 

  • Koskella B, Meaden S (2013) Understanding bacteriophage specificity in natural microbial communities. Viruses 5:806–823

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    CAS  PubMed  CrossRef  Google Scholar 

  • Lenski RE (1988) Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42:425–432

    PubMed  Google Scholar 

  • Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am Nat 125:585–602

    CrossRef  Google Scholar 

  • Levin BR, Bull JJ (1996) Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am Nat 147:881–898

    CrossRef  Google Scholar 

  • Luria SE (1947) Recent advances in bacterial genetics. Bacteriol Rev 11:1–40

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Luria SE, Delbrück M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Mangalea MR, Duerkop BA (2020) Fitness trade-offs resulting from bacteriophage resistance potentiate synergistic antibacterial strategies. Infect Immun 88:e00926-19

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Markwitz P, Lood C, Olszak T, van Noort V, Lavigne R, Drulis-Kawa Z (2021) Genome-driven elucidation of phage-host interplay and impact of phage resistance evolution on bacterial fitness. ISME J 16:533–542

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Meaden S, Paszkiewicz K, Koskella B (2015) The cost of phage resistance in a plant pathogenic bacterium is context-dependent. Evolution 69:1321–1328

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, Resch G, Que YA (2017) Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis 215:703–712

    CAS  PubMed  Google Scholar 

  • Presloid JB, Ebendick-Corp BE, Zarate S, Novella IS (2008) Antagonistic pleiotropy involving promoter sequences in a virus. J Mol Biol 382:342–352

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Roach DR, Leung CY, Henry M, Morello E, Singh D, Di Santo JP, Weitz JS, Debarbieux L (2017) Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22:38–47

    CAS  PubMed  CrossRef  Google Scholar 

  • Rodriguez-Verdugo A, Carrillo-Cisneros D, Gonzalez-Gonzalez A, Gaut BS, Bennett AF (2014) Different tradeoffs result from alternate genetic adaptations to a common environment. Proc Natl Acad Sci U S A 111:12121–12126

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Scanlan PD, Hall AR, Blackshields G, Friman VP, Davis MR Jr, Goldberg JB, Buckling A (2015) Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol Biol Evol 32:1425–1435

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128:307–318

    CAS  PubMed  Google Scholar 

  • Sumrall ET, Shen Y, Keller AP, Rismondo J, Pavlou M, Eugster MR, Boulos S, Disson O, Thouvenot P, Kilcher S, Wollscheid B, Cabanes D, Lecuit M, Grundling A, Loessner MJ (2019) Phage resistance at the cost of virulence: Listeria monocytogenes serovar 4b requires galactosylated teichoic acids for InlB-mediated invasion. PLoS Pathog 15:e1008032

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Trudelle DM, Bryan DW, Hudson LK, Denes TG (2019) Cross-resistance to phage infection in Listeria monocytogenes serotype 1/2a mutants. Food Microbiol 84:103239

    CAS  PubMed  CrossRef  Google Scholar 

  • Wang X, Wei Z, Yang K, Wang J, Jousset A, Xu Y, Shen Q, Friman VP (2019) Phage combination therapies for bacterial wilt disease in tomato. Nat Biotech 37:1513–1520

    CAS  CrossRef  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    CrossRef  Google Scholar 

  • Wiser MJ, Lenski RE (2015) A comparison of methods to measure fitness in Escherichia coli. PLoS One 10:e0126210

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Wright RCT, Friman VP, Smith MCM, Brockhurst MA (2018) Cross-resistance is modular in bacteria-phage interactions. PLoS Biol 16:e2006057

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Abedon, S.T. (2022). Pleiotropic Costs of Phage Resistance. In: Bacteriophages as Drivers of Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-94309-7_22

Download citation