Skip to main content

Regulation of Fatty Acid Oxidation in Skeletal Muscle During Exercise: Effect of Obesity

  • Chapter
  • First Online:
Exercise Metabolism

Abstract

This chapter summarizes how fatty acid (FA) oxidation is regulated in skeletal muscle during exercise and the role of obesity in regulation of FA oxidation in skeletal muscle. The substrates fueling increased FA oxidation in skeletal muscle during exercise are mainly circulating FAs, although hydrolysis of circulating triacylglycerol (TG) in very-low-density lipoproteins (VLDL-TG) and especially lipolysis of intramuscular TG (IMTG) also appear to contribute to some extent. Several steps are involved in FA uptake and oxidation in skeletal muscle and could all be of importance in the regulation of FA oxidation during exercise. Besides trans-sarcolemmal FA uptake via fatty acid transporters, it appears that intramyocellular carnitine content plays an important regulatory step in regulation of substrate selection during exercise. Interestingly, individuals with obesity exhibit a compromised ability to oxidize FAs and to increase FA oxidation in response to lipid exposure (reduced metabolic flexibility). Skeletal muscle mitochondrial function appears to be related to this defect. It remains controversial whether this impaired FA oxidative capacity in obesity diminishes the ability to increase and properly regulate FA oxidation during an acute, single exercise bout. However, despite these initial impairments in FA oxidation capacity in the obese situation, endurance exercise training can rescue the capacity for FA oxidation and the metabolic flexibility in the skeletal muscle of individuals with obesity at least to equivalent levels of their lean counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alsted TJ, Ploug T, Prats C, Serup AK, Hoeg L, Schjerling P, Holm C, Zimmermann R, Fledelius C, Galbo H, Kiens B (2013) Contraction-induced lipolysis is not impaired by inhibition of hormone-sensitive lipase in skeletal muscle. J Physiol 591:5141–5155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arad AD, Basile AJ, Albu J, DiMenna FJ (2020) No influence of overweight/obesity on exercise lipid oxidation: a systematic review. Int J Mol Sci 21:1614

    Article  CAS  PubMed Central  Google Scholar 

  • Arner P, Kriegholm E, Engfeldt P, Bolinder J (1990) Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Invest 85:893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahr R, Hostmark AT, Newsholme EA, Gronnerod O, Sejersted OM (1991) Effect of exercise on recovery changes in plasma levels of FFA, glycerol, glucose and catecholamines. Acta Physiol Scand 143:105–115

    Article  CAS  PubMed  Google Scholar 

  • Balcı SS (2012) Comparison of substrate oxidation during walking and running in normal-weight and overweight/obese men. Obes Facts 5:327–338

    Article  PubMed  Google Scholar 

  • Battaglia GM, Zheng D, Hickner RC, Houmard JA (2012) Effect of exercise training on metabolic flexibility in response to a high-fat diet in obese individuals. Am J Physiol Endocrinol Metab 303:E1440–E1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begaye B, Vinales KL, Hollstein T, Ando T, Walter M, Bogardus C, Krakoff J, Piaggi P (2020) Impaired metabolic flexibility to high-fat overfeeding predicts future weight gain in healthy adults. Diabetes 69:181–192

    Article  CAS  PubMed  Google Scholar 

  • Bell JA, Reed MA, Consitt LA, Martin OJ, Haynie KR, Hulver MW, Muoio DM, Dohm GL (2010) Lipid partitioning, incomplete fatty acid oxidation, and insulin signal transduction in primary human muscle cells: effects of severe obesity, fatty acid incubation, and fatty acid translocase/CD36 overexpression. J Clin Endocrinol Metab 95:3400–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benninghoff T, Espelage L, Eickelschulte S, Zeinert I, Sinowenka I, Müller F, Christina Schöndeling C, Batchelor H, Cames S, Zhou Z, Kotzka J, Chadt A, Al-Hasani H (2020) The Rab GAPs TBC1D1 and TBC1D4 control uptake of Long-chain fatty acids into skeletal muscle via fatty acid transporter SLC27A4/FATP4. Diabetes 69:2281–2293

    Article  CAS  PubMed  Google Scholar 

  • Berggren JR, Hulver MW, Dohm GL, Houmard JA (2004) Weight loss and exercise: implications for muscle lipid metabolism and insulin action. Med Sci Sports Exerc 36:1191–1195

    Article  CAS  PubMed  Google Scholar 

  • Bergman BC, Butterfield GE, Wolfel EE, Casazza GA, Lopaschuk GD, Brooks GA (1999) Evaluation of exercise and training on muscle lipid metabolism. Am J Phys 276:E106–E117

    CAS  Google Scholar 

  • Bonen A, Han XX, Habets DD, Febbraio M, Glatz JF, Luiken JJ (2007) A null mutation in skeletal muscle FAT/CD36 reveals its essential role in insulin- and AICAR-stimulated fatty acid metabolism. Am J Physiol Endocrinol Metab 292(6):E1740–E1749

    Article  CAS  PubMed  Google Scholar 

  • Bonen A, Luiken JJ, Arumugam Y, Glatz JF, Tandon NN (2000) Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase. J Biol Chem 275:14501–14508

    Article  CAS  PubMed  Google Scholar 

  • Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J (2004) Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Asp Med 25(5–6):495–520

    Article  CAS  Google Scholar 

  • Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM, Häkkinen K, Jenkins NT, Karavirta L, Kraus WE, Leon AS, Rao DC, Sarzynski MA, Skinner JS, Slentz CA, Rankinen T (2012) Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One 7:e37887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchard C, Rankinen T (2001) Individual differences in response to regular physical activity. Med Sci Sports Exerc 33:S446–S451

    Article  CAS  PubMed  Google Scholar 

  • Boyle KE, Canham JP, Consitt LA, Zheng D, Koves TR, Gavin TP, Holbert D, Neufer PD, Ilkayeva O, Muoio DM, Houmard JA (2011) A high-fat diet elicits differential responses in genes coordinating oxidative metabolism in skeletal muscle of lean and obese individuals. J Clin Endocrinol Metab 96:775–781

    Article  CAS  PubMed  Google Scholar 

  • Boyle KE, Zheng D, Anderson EJ, Neufer PD, Houmard JA (2012) Mitochondrial lipid oxidation is impaired in cultured myotubes from obese humans. Int J Obes 36:1025–1031

    Article  CAS  Google Scholar 

  • Bradley NS, Snook LA, Jain SS, Heigenhauser GJ, Bonen A, Spriet LL (2012) Acute endurance exercise increases plasma membrane fatty acid transport proteins in rat and human skeletal muscle. Am J Physiol Endocrinol Metab 302:E183–E189

    Article  CAS  PubMed  Google Scholar 

  • Broskey NT, Zou K, Dohm GL, Houmard JA (2020) Plasma lactate as a marker for metabolic health. Exerc Sport Sci Rev 48:119–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Calbet JA, Lundby C (2012) Skeletal muscle vasodilatation during maximal exercise in health and disease. J Physiol 590:6285–6296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell SE, Tandon NN, Woldegiorgis G, Luiken JJ, Glatz JF, Bonen A (2004) A novel function for fatty acid translocase (FAT)/CD36: involvement in long chain fatty acid transfer into the mitochondria. J Biol Chem 279:36235–36241

    Article  CAS  PubMed  Google Scholar 

  • Carlson LA, Ekelund LG, Fröberg SO (1971) Concentration of triglycerides, phospholipids and glycogen in skeletal muscle and of free fatty acids and beta-hydroxybutyric acid in blood in man in response to exercise. Eur J Clin Investig 1:248–254

    Article  CAS  Google Scholar 

  • Chabowski A, Górski J, Luiken JJ, Glatz JF, Bonen A (2007) Evidence for concerted action of FAT/CD36 and FABPpm to increase fatty acid transport across the plasma membrane. Prostaglandins Leukot Essent Fatty Acids 77:345–353

    Article  CAS  PubMed  Google Scholar 

  • Chadt A, Leicht K, Deshmukh A, Jiang LQ, Scherneck S, Bernhardt U, Dreja T, Vogel H, Schmolz K, Kluge R, Zierath JR, Hultschig C, Hoeben RC, Schurmann A, Joost HG, Al-Hasani H (2008) Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nat Genet 40:1354–1359

    Article  CAS  PubMed  Google Scholar 

  • Chee C, Shannon CE, Burns A, Selby AL, Wilkinson D, Smith K, Greenhaff PL, Stephens FB (2021) Increasing skeletal muscle carnitine content in older individuals increases whole-body fat oxidation during moderate-intensity exercise. Aging Cell 20:e13303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen EH, Hansen O (1939) Respiratorisher quotientund O2–aufname. Skand Arch Physiol 81:160–171

    Article  Google Scholar 

  • Clarke DC, Miskovic D, Han XX, Calles-Escandon J, Glatz JF, Luiken JJ, Heikkila JJ, Bonen A (2004) Overexpression of membrane-associated fatty acid binding protein (FABPpm) in vivo increases fatty acid sarcolemmal transport and metabolism. Physiol Genomics 17:31–37

    Article  CAS  PubMed  Google Scholar 

  • Colberg SR, Hagberg JM, McCole SD, Zmuda JM, Thompson PD, Kelley DE (1996) Utilization of glycogen but not plasma glucose is reduced in individuals with NIDDM during mild-intensity exercise. J Appl Physiol (1985) 81:2027–2033

    Article  CAS  Google Scholar 

  • Consitt LA, Bell JA, Koves TR, Muoio DM, Hulver MW, Haynie KR, Dohm GL, Houmard JA (2010) Peroxisome proliferator-activated receptor-gamma coactivator-1alpha overexpression increases lipid oxidation in myocytes from extremely obese individuals. Diabetes 59:1407–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantin-Teodosiu D, Carlin JI, Cederblad G, Harris RC, Hultman E (1991) Acetyl group accumulation and pyruvate dehydrogenase activity in human muscle during incremental exercise. Acta Physiol Scand 143:367–372

    Article  CAS  PubMed  Google Scholar 

  • Constantin-Teodosiu D, Peirce NS, Fox J, Greenhaff PL (2004) Muscle pyruvate availability can limit the flux, but not activation, of the pyruvate dehydrogenase complex during submaximal exercise in humans. J Physiol 561:647–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortright RN, Sandhoff KM, Basilio JL, Berggren JR, Hickner RC, Hulver MW, Dohm GL, Houmard JA (2006) Skeletal muscle fat oxidation is increased in African-American and white women after 10 days of endurance exercise training. Obesity (Silver Spring) 14:1201–1210

    Article  CAS  Google Scholar 

  • Costill DL, Fink WJ, Getchell LH, Ivy JL, Witzmann FA (1979) Lipid metabolism in skeletal muscle of endurance-trained males and females. J Appl Physiol Respir Environ Exerc Physiol 47:787–791

    CAS  PubMed  Google Scholar 

  • Dahlmans D, Houzelle A, Schrauwen P, Hoeks J (2016) Mitochondrial dynamics, quality control and mi RNA regulation in skeletal muscle: implications for obesity and related metabolic disease. Clin Sci (Lond) 130:843–852

    Article  CAS  Google Scholar 

  • de Glisezinski I, Larrouy D, Bajzova M, Koppo K, Polak J, Berlan M, Bulow J, Langin D, Marques MA, Crampes F, Lafontan M, Stich V (2009) Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue. J Physiol 587:3393–3404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Matos MA, Vieira DV, Pinhal KC, Lopes JF, Dias-Peixoto MF, Pauli JR, de Castro MF, Little JP, Rocha-Vieira E, Amorim FT (2018) High-intensity interval training improves markers of oxidative metabolism in skeletal muscle of individuals with obesity and insulin resistance. Front Physiol 9:1451

    Article  PubMed  PubMed Central  Google Scholar 

  • Dean D, Daugaard JR, Young ME, Saha A, Vavvas D, Asp S, Kiens B, Kim KH, Witters L, Richter EA, Ruderman N (2000) Exercise diminishes the activity of acetyl-CoA carboxylase in human muscle. Diabetes 49(8):1295–1300

    Article  CAS  PubMed  Google Scholar 

  • Decombaz J, Schmitt B, Ith M, Decarli B, Diem P, Kreis R, Hoppeler H, Boesch C (2001) Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 281:R760–R769

    Article  CAS  PubMed  Google Scholar 

  • Devries MC, Samjoo IA, Hamadeh MJ, McCready C, Raha S, Watt MJ, Steinberg GR, Tarnopolsky MA (2013) Endurance training modulates intramyocellular lipid compartmentalization and morphology in skeletal muscle of lean and obese women. J Clin Endocrinol Metab 98:4852–4862

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vegas A, Sanchez-Aguilera P, Krycer JR, Morales PE, Monsalves-Alvarez M, Cifuentes M, Rothermel BA, Lavandero S (2020) Is mitochondrial dysfunction a common root of noncommunicable chronic diseases? Endocr Rev 41:491–517

    Article  Google Scholar 

  • Dzamko N, Schertzer JD, Ryall JG, Steel R, Macaulay SL, Wee S, Chen ZP, Michell BJ, Oakhill JS, Watt MJ, Jorgensen SB, Lynch GS, Kemp BE, Steinberg GR (2008) AMPK-independent pathways regulate skeletal muscle fatty acid oxidation. J Physiol 586(Pt 23):5819–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eaton S (2002) Control of mitochondrial beta-oxidation flux. Prog Lipid Res 41:197–239

    Article  CAS  PubMed  Google Scholar 

  • Eaves AD, Colon A, Dubose KD, Collier D, Houmard JA (2012) Substrate utilization during submaximal exercise in children with a severely obese parent. Nutr Metab (Lond) 9:38–39

    Article  CAS  Google Scholar 

  • Essén B (1978) Studies on the regulation of metabolism in human skeletal muscle using intermittent exercise as an experimental model. Acta Physiol Scand Suppl 454:1–32

    PubMed  Google Scholar 

  • Ezell DM, Geiselman PJ, Anderson AM, Dowdy ML, Womble LG, Greenway FL, Zachwieja JJ (1999) Substrate oxidation and availability during acute exercise in non-obese, obese, and post-obese sedentary females. Int J Obes Relat Metab Disord 23:1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Friedlander AL, Casazza GA, Horning MA, Usaj A, Brooks GA (1999) Endurance training increases fatty acid turnover, but not fat oxidation, in young men. J Appl Physiol (1985) 86:2097–2105

    Article  CAS  Google Scholar 

  • Friedman S, Fraenkel G (1955) Reversible enzymatic acetylation of carnitine. Arch Biochem Biophys 59:491–501

    Article  CAS  PubMed  Google Scholar 

  • Fritzen AM, Lundsgaard AM, Jeppesen J, Christiansen ML, Bienso R, Dyck JR, Pilegaard H, Kiens B (2015) 5'-AMP activated protein kinase alpha2 controls substrate metabolism during post-exercise recovery via regulation of pyruvate dehydrogenase kinase 4. J Physiol 593:4765–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritzen AM, Lundsgaard AM, Kiens B (2020) Tuning fatty acid oxidation in skeletal muscle with dietary fat and exercise. Nat Rev Endocrinol 16:683–696

    Article  CAS  PubMed  Google Scholar 

  • Galgani JE, Moro C, Ravussin E (2008) Metabolic flexibility and insulin resistance. Am J Physiol Endocrinol Metab 295:E1009–E1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaster M (2009) Reduced lipid oxidation in myotubes established from obese and type 2 diabetic subjects. Biochem Biophys Res Commun 382:766–770

    Article  CAS  PubMed  Google Scholar 

  • Gaster M (2012) Reduced TCA flux in diabetic Myotubes: determined by single defects? Biochem Res Int 2012:716056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaster M, Nehlin JO, Minet AD (2012) Impaired TCA cycle flux in mitochondria in skeletal muscle from type 2 diabetic subjects: marker or maker of the diabetic phenotype? Arch Physiol Biochem 118:156–189

    Article  CAS  PubMed  Google Scholar 

  • Gillen JB, Percival ME, Ludzki A, Tarnopolsky MA, Gibala MJ (2013) Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity (Silver Spring) 21:2249–2255

    Article  CAS  Google Scholar 

  • Goodpaster BH, Katsiaras A, Kelley DE (2003) Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 52:2191–2197

    Article  CAS  PubMed  Google Scholar 

  • Goodpaster BH, Sparks LM (2017) Metabolic flexibility in health and disease. Cell Metab 25:1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodpaster BH, Wolfe RR, Kelley DE (2002) Effects of obesity on substrate utilization during exercise. Obes Res 10:575–584

    Article  CAS  PubMed  Google Scholar 

  • Guesbeck NR, Hickey MS, Mac Donald KG, Pories WJ, Harper I, Ravussin E, Dohm GL, Houmard JA (2001) Substrate utilization during exercise in formerly morbidly obese women. J Appl Physiol (1985) 90:1007–1012

    Article  CAS  Google Scholar 

  • Gundersen AE, Kugler BA, McDonald PM, Veraksa A, Houmard JA, Zou K (2020) Altered mitochondrial network morphology and regulatory proteins in mitochondrial quality control in myotubes from severely obese humans with or without type 2 diabetes. Appl Physiol Nutr Metab 45:283–293

    Article  CAS  PubMed  Google Scholar 

  • Hagenfeldt L, Wahren J (1968) Human forearm muscle metabolism during exercise. II. Uptake, release and oxidation of individual FFA and glycerol. Scand J Clin Lab Invest 21:263–276

    Article  CAS  PubMed  Google Scholar 

  • Hagenfeldt L, Wahren J (1975) Turnover of free fatty acids during recovery from exercise. J Appl Physiol 39:247–250

    Article  CAS  PubMed  Google Scholar 

  • Hansen K, Shriver T, Schoeller D (2005) The effects of exercise on the storage and oxidation of dietary fat. Sports Med 35:363–373

    Article  PubMed  Google Scholar 

  • Harris RA, Bowker-Kinley MM, Huang B, Wu P (2002) Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzym Regul 42:249–259

    Article  CAS  Google Scholar 

  • Harris RC, Foster CV, Hultman E (1987) Acetylcarnitine formation during intense muscular contraction in humans. J Appl Physiol (1985) 63:440–442

    Article  CAS  Google Scholar 

  • Helge JW, Watt PW, Richter EA, Rennie MJ, Kiens B (2001) Fat utilization during exercise: adaptation to a fat-rich diet increases utilization of plasma fatty acids and very low density lipoprotein-triacylglycerol in humans. J Physiol 537:1009–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickner RC, Privette J, McIver K, Barakat H (2001) Fatty acid oxidation in African-American and Caucasian women during physical activity. J Appl Physiol (1985) 90:2319–2324

    Article  CAS  Google Scholar 

  • Hingst JR, Kjøbsted R, Birk JB, Jørgensen NO, Larsen MR, Kido K, Larsen JP, Kjeldsen SAS, Fentz J, Frøsig C, Holm S, Fritzen AM, Dohlman TL, Larsen S, Foretz M, Viollet B, Schjerling P, Overby P, Halling JF, Pilegaard H, Hellsten Y, Wojtaszewski JF (2020) Inducible deletion of skeletal muscle AMPKα reveals that AMPK is required fornucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise. Mol Metab 40:101028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holloway GP, Bezaire V, Heigenhauser GJ, Tandon NN, Glatz JF, Luiken JJ, Bonen A, Spriet LL (2006) Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise. J Physiol 571:201–210

    Article  CAS  PubMed  Google Scholar 

  • Holloway GP, Bonen A, Spriet LL (2009) Regulation of skeletal muscle mitochondrial fatty acid metabolism in lean and obese individuals. Am J Clin Nutr 89:455S–462S

    Article  CAS  PubMed  Google Scholar 

  • Holloway GP, Lally J, Nickerson JG, Alkhateeb H, Snook LA, Heigenhauser GJ, Calles-Escandon J, Glatz JF, Luiken JJ, Spriet LL, Bonen A (2007b) Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle. J Physiol 582(Pt 1):393–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holloway GP, Thrush AB, Heigenhauser GJ, Tandon NN, Dyck DJ, Bonen A, Spriet LL (2007a) Skeletal muscle mitochondrial FAT/CD36 content and palmitate oxidation are not decreased in obese women. Am J Physiol Endocrinol Metab 292:E1782–E1789

    Article  CAS  PubMed  Google Scholar 

  • Horowitz JF, Klein S (2000) Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity. J Appl Physiol (1985) 89:2276–2282

    Article  CAS  Google Scholar 

  • Houmard JA (2008) Intramuscular lipid oxidation and obesity. Am J Physiol Regul Integr Comp Physiol 294:R1111–R1116

    Article  CAS  PubMed  Google Scholar 

  • Houmard JA, Pories WJ, Dohm GL (2011) Is there a metabolic program in the skeletal muscle of obese individuals? J Obes 2011:250496

    Article  PubMed  PubMed Central  Google Scholar 

  • Houmard JA, Pories WJ, Dohm GL (2012) Severe obesity: evidence for a deranged metabolic program in skeletal muscle? Exerc Sport Sci Rev 40:204–210

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulver MW, Berggren JR, Carper MJ, Miyazaki M, Ntambi JM, Hoffman EP, Thyfault JP, Stevens R, Dohm GL, Houmard JA, Muoio DM (2005) Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab 2:251–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulver MW, Berggren JR, Cortright RN, Dudek RW, Thompson RP, Pories WJ, Mac Donald KG, Cline GW, Shulman GI, Dohm GL, Houmard JA (2003) Skeletal muscle lipid metabolism with obesity. Am J Physiol Endocrinol Metab 284:E741–E747

    Article  CAS  PubMed  Google Scholar 

  • Hurley BF, Nemeth PM, Martin WH III, Hagberg JM, Dalsky GP, Holloszy JO (1986) Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol (1985) 60:562–567

    Article  CAS  Google Scholar 

  • Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K, Cameron R, Abumrad NA (1999) Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin. J Biol Chem 274(38):26761–26766

    Article  CAS  PubMed  Google Scholar 

  • Jain SS, Chabowski A, Snook LA, Schwenk RW, Glatz JF, Luiken JJ, Bonen A (2009) Additive effects of insulin and muscle contraction on fatty acid transport and fatty acid transporters, FAT/CD36, FABPpm, FATP1, 4 and 6. FEBS Lett 583:2294–2300

    Article  CAS  PubMed  Google Scholar 

  • Jeppesen J, Albers PH, Rose AJ, Birk JB, Schjerling P, Dzamko N, Steinberg GR, Kiens B (2011) Contraction-induced skeletal muscle FAT/CD36 trafficking and FA uptake is AMPK independent. J Lipid Res 52(4):699–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeppesen J, Mogensen M, Prats C, Sahlin K, Madsen K, Kiens B (2010) FAT/CD36 is localized in sarcolemma and in vesicle-like structures in subsarcolemma regions but not in mitochondria. J Lipid Res 51:1504–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones TE, Pories WJ, Houmard JA, Tanner CJ, Zheng D, Zou K, Coen PM, Goodpaster BH, Kraus WE, Dohm GL (2019) Plasma lactate as a marker of metabolic health: implications of elevated lactate for impairment of aerobic metabolism in the metabolic syndrome. Surgery 166:861–866

    Article  PubMed  Google Scholar 

  • Kanaley JA, Cryer PE, Jensen MD (1993) Fatty acid kinetic responses to exercise. Effects of obesity, body fat distribution, and energy-restricted diet. J Clin Invest 92:255–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaley JA, Shadid S, Sheehan MT, Guo Z, Jensen MD (2009) Relationship between plasma free fatty acid, intramyocellular triglycerides and long-chain acylcarnitines in resting humans. J Physiol 587:5939–5950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaley JA, Weatherup-Dentes MM, Alvarado CR, Whitehead G (2001) Substrate oxidation during acute exercise and with exercise training in lean and obese women. Eur J Appl Physiol 85:68–73

    Article  CAS  PubMed  Google Scholar 

  • Kelley DE, Goodpaster B, Wing RR, Simoneau JA (1999) Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Phys 277:E1130–E1141

    Article  CAS  Google Scholar 

  • Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950

    Article  CAS  PubMed  Google Scholar 

  • Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86(1):205–243

    Article  CAS  PubMed  Google Scholar 

  • Kiens B, Essen-Gustavsson B, Christensen NJ, Saltin B (1993) Skeletal muscle substrate utilization during submaximal exercise in man: effect of endurance training. J Physiol 469:459–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiens B, Lithell H, Mikines KJ, Richter EA (1989) Effects of insulin and exercise on muscle lipoprotein lipase activity in man and its relation to insulin action. J Clin Invest 84(4):1124–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiens B, Richter EA (1998) Utilization of skeletal muscle triacylglycerol during postexercise recovery in humans. Am J Phys 275:E332–E337

    CAS  Google Scholar 

  • Kim JY, Hickner RC, Cortright RL, Dohm GL, Houmard JA (2000) Lipid oxidation is reduced in obese human skeletal muscle. Am J Physiol Endocrinol Metab 279:E1039–E1044

    Article  CAS  PubMed  Google Scholar 

  • Kolodziej MP, Zammit VA (1990) Re-evaluation of the interaction of malonyl-CoA with the rat liver mitochondrial carnitine palmitoyltransferase system by using purified outer membranes. Biochem J 267:85–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriketos AD, Pan DA, Lillioja S, Cooney GJ, Baur LA, Milner MR, Sutton JR, Jenkins AB, Bogardus C, Storlien LH (1996) Interrelationships between muscle morphology, insulin action, and adiposity. Am J Phys 270:R1332–R1339

    CAS  Google Scholar 

  • Krogh A, Lindhard J (1920) The relative value of fat and carbohydrate as sources of muscular energy: with appendices on the correlation between standard metabolism and the respiratory quotient during rest and work. Biochem J 14(3–4):290–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krssak M, Petersen KF, Bergeron R, Price T, Laurent D, Rothman DL, Roden M, Shulman GI (2000) Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: a 13C and 1H nuclear magnetic resonance spectroscopy study. J Clin Endocrinol Metab 85:748–754

    CAS  PubMed  Google Scholar 

  • Lafontan M, Moro C, Berlan M, Crampes F, Sengenes C, Galitzky J (2008) Control of lipolysis by natriuretic peptides and cyclic GMP. Trends Endocrinol Metab 19:130–137

    Article  CAS  PubMed  Google Scholar 

  • Lally JS, Jain SS, Han XX, Snook LA, Glatz JF, Luiken JJ, McFarlan J, Holloway GP, Bonen A (2012) Caffeine-stimulated fatty acid oxidation is blunted in CD36 null mice. Acta Physiol (Oxf) 205:71–81

    Article  CAS  Google Scholar 

  • Langfort J, Ploug T, Ihlemann J, Holm C, Galbo H (2000) Stimulation of hormone-sensitive lipase activity by contractions in rat skeletal muscle. Biochem J 351:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson-Meyer DE, Newcomer BR, Hunter GR (2002) Influence of endurance running and recovery diet on intramyocellular lipid content in women: a 1H NMR study. Am J Physiol Endocrinol Metab 282:E95–E106

    Article  CAS  PubMed  Google Scholar 

  • Lee-Young RS, Griffee SR, Lynes SE, Bracy DP, Ayala JE, McGuinness OP, Wasserman DH (2009) Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo. J Biol Chem 284(36):23925–23934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li LO, Grevengoed TJ, Paul DS, Ilkayeva O, Koves TR, Pascual F, Newgard CB, Muoio DM, Coleman RA (2015) Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis. Diabetes 64:23–35

    Article  CAS  PubMed  Google Scholar 

  • Lithell H, Hellsing K, Lundqvist G, Malmberg P (1979) Lipoprotein-lipase activity of human skeletal-muscle and adipose tissue after intensive physical exercise. Acta Physiol Scand 105(3):312–315

    Article  CAS  PubMed  Google Scholar 

  • Løvsletten NG, Rustan AC, Laurens C, Thoresen GH, Moro C, Nikolić N (2020) Primary defects in lipid handling and resistance to exercise in myotubes from obese donors with and without type 2 diabetes. Appl Physiol Nutr Metab 45:169–179

    Article  PubMed  CAS  Google Scholar 

  • Lundsgaard AM, Fritzen AM, Kiens B (2018) Molecular regulation of fatty acid oxidation in skeletal muscle during aerobic exercise. Trends Endocrinol Metab 29:18–30

    Article  CAS  PubMed  Google Scholar 

  • Lundsgaard AM, Fritzen AM, Kiens B (2020) The importance of fatty acids as nutrients during post-exercise recovery. Nutrients 12:nu12020280

    Article  CAS  Google Scholar 

  • MacPherson RE, Vandenboom R, Roy BD, Peters SJ (2013) Skeletal muscle PLIN3 and PLIN5 are serine phosphorylated at rest and following lipolysis during adrenergic or contractile stimulation. Physiol Rep 1:e00084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maples JM, Brault JJ, Shewchuk BM, Witczak CA, Zou K, Rowland N, Hubal MJ, Weber TM, Houmard JA (2015a) Lipid exposure elicits differential responses in gene expression and DNA methylation in primary human skeletal muscle cells from severely obese women. Physiol Genomics 47:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maples JM, Brault JJ, Witczak CA, Park S, Hubal MJ, Weber TM, Houmard JA, Shewchuk BM (2015b) Differential epigenetic and transcriptional response of the skeletal muscle carnitine palmitoyltransferase 1B (CPT1B) gene to lipid exposure with obesity. Am J Physiol Endocrinol Metab 309:E345–E356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marra M, Scalfi L, Contaldo F, Pasanisi F (2004) Fasting respiratory quotient as a predictor of long-term weight changes in non-obese women. Ann Nutr Metab 48:189–192

    Article  CAS  PubMed  Google Scholar 

  • McConell GK (2020) It's well and truly time to stop stating that AMPK regulates glucose uptake and fat oxidation during exercise. Am J Physiol Endocrinol Metab 318:E564–E567

    Article  CAS  PubMed  Google Scholar 

  • McConell GK, Wadley GD, Le PK, Linden KC (2020) Skeletal muscle AMPK is not activated during 2h of moderate intensity exercise at 65% VO2 peak in endurance trained men. J Physiol 598:3859–3870

    Article  CAS  PubMed  Google Scholar 

  • McFarlan JT, Yoshida Y, Jain SS, Han XX, Snook LA, Lally J, Smith BK, Glatz JF, Luiken JJ, Sayer RA, Tupling AR, Chabowski A, Holloway GP, Bonen A (2012) In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation. J Biol Chem 287(28):23502–23516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGarry JD, Mills SE, Long CS, Foster DW (1983) Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase I in animal and human tissues. Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat. Biochem J 214:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miotto PM, Steinberg GR, Holloway GP (2017) Controlling skeletal muscle CPT-I malonyl-CoA sensitivity: the importance of AMPK-independent regulation of intermediate filaments during exercise. Biochem J 474:557–569

    Article  CAS  PubMed  Google Scholar 

  • Mittendorfer B, Fields DA, Klein S (2004) Excess body fat in men decreases plasma fatty acid availability and oxidation during endurance exercise. Am J Physiol Endocrinol Metab 286:E354–E362

    Article  CAS  PubMed  Google Scholar 

  • Miura S, Kai Y, Kamei Y, Bruce CR, Kubota N, Febbraio MA, Kadowaki T, Ezaki O (2009) Alpha 2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise. Am J Physiol Endocrinol Metab 296(1):E47–E55

    Article  CAS  PubMed  Google Scholar 

  • Monaco C, Whitfield J, Jain SS, Spriet LL, Bonen A, Holloway GP (2015) Activation of AMPKalpha2 is not required for mitochondrial FAT/CD36 accumulation during exercise. PLoS One 10:e0126122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morio B, Holmback U, Gore D, Wolfe RR (2004) Increased VLDL-TAG turnover during and after acute moderate-intensity exercise. Med Sci Sports Exerc 36:801–806

    Article  CAS  PubMed  Google Scholar 

  • Moro C, Crampes F, Sengenes C, de Glisezinski I, Galitzky J, Thalamas C, Lafontan M, Berlan M (2004) Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans. FASEB J 18:908–910

    Article  CAS  PubMed  Google Scholar 

  • Moro C, Polak J, Hejnova J, Klimcakova E, Crampes F, Stich V, Lafontan M, Berlan M (2006) Atrial natriuretic peptide stimulates lipid mobilization during repeated bouts of endurance exercise. Am J Physiol Endocrinol Metab 290:E864–E869

    Article  CAS  PubMed  Google Scholar 

  • Nellemann B, Sondergaard E, Jensen J, Pedersen SB, Jessen N, Jorgensen JO, Nielsen S (2014) Kinetics and utilization of lipid sources during acute exercise and acipimox. Am J Physiol Endocrinol Metab 307:E199–E208

    Article  CAS  PubMed  Google Scholar 

  • Odland LM, Heigenhauser GJ, Lopaschuk GD, Spriet LL (1996) Human skeletal muscle malonyl-CoA at rest and during prolonged submaximal exercise. Am J Phys 270:E541–E544

    CAS  Google Scholar 

  • Odland LM, Howlett RA, Heigenhauser GJ, Hultman E, Spriet LL (1998) Skeletal muscle malonyl-CoA content at the onset of exercise at varying power outputs in humans. Am J Phys 274:E1080–E1085

    CAS  Google Scholar 

  • O'Neill HM, Lally JS, Galic S, Pulinilkunnil T, Ford RJ, Dyck JR, van Denderen BJ, Kemp BE, Steinberg GR (2015) Skeletal muscle ACC2 S212 phosphorylation is not required for the control of fatty acid oxidation during exercise. Physiol Rep 3(7):e12444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perreault L, Lavely JM, Kittelson JM, Horton TJ (2004) Gender differences in lipoprotein lipase activity after acute exercise. Obes Res 12:241–249

    Article  CAS  PubMed  Google Scholar 

  • Phillips SM, Green HJ, Tarnopolsky MA, Heigenhauser GJ, Grant SM (1996) Progressive effect of endurance training on metabolic adaptations in working skeletal muscle. Am J Phys 270:E265–E272

    Article  CAS  Google Scholar 

  • Prats C, Donsmark M, Qvortrup K, Londos C, Sztalryd C, Holm C, Galbo H, Ploug T (2006) Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. J Lipid Res 47:2392–2399

    Article  CAS  PubMed  Google Scholar 

  • Radegran G, Saltin B (1998) Muscle blood flow at onset of dynamic exercise in humans. Am J Phys 274:H314–H322

    CAS  Google Scholar 

  • Raney MA, Turcotte LP (2006) Regulation of contraction-induced FA uptake and oxidation by AMPK and ERK1/2 is intensity dependent in rodent muscle. Am J Physiol Endocrinol Metab 291:E1220–E1227

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen BB, Winder WW (1997) Effect of exercise intensity on skeletal muscle malonyl-CoA and acetyl-CoA carboxylase. J Appl Physiol (1985) 83:1104–1109

    Article  CAS  Google Scholar 

  • Ren J, Lakoski S, Haller RG, Sherry AD, Malloy CR (2013) Dynamic monitoring of carnitine and acetylcarnitine in the trimethylamine signal after exercise in human skeletal muscle by 7T 1H-MRS. Magn Reson Med 69:7–17

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff C, Halberg N, Hillig T, Saha AK, Ruderman NB, Wojtaszewski JF, Richter EA, Kiens B (2005) Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Am J Physiol Endocrinol Metab 288:E133–E142

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup IL, Richter EA, Kiens B (2002) Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol Endocrinol Metab 282:E435–E447

    Article  CAS  PubMed  Google Scholar 

  • Rogge MM (2009) The role of impaired mitochondrial lipid oxidation in obesity. Biol Res Nurs 10:356–373

    Article  CAS  PubMed  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys 265(3 Pt 1):E380–E391

    CAS  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR (2000) Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol (1985) 88:1707–1714

    Article  CAS  Google Scholar 

  • Sahlin K (1990) Muscle carnitine metabolism during incremental dynamic exercise in humans. Acta Physiol Scand 138:259–262

    Article  CAS  PubMed  Google Scholar 

  • Samovski D, Su X, Xu Y, Abumrad NA, Stahl PD (2012) Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J Lipid Res 53:709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santiworakul A, Chuaychoo B, Kriengsinyos W, Saengsirisuwan V, Jalayondeja W (2014) Substrate utilization during and after high intensity exercise in healthy lean and obese men. J Med Assoc Thail 97(Suppl 7):S50–S54

    Google Scholar 

  • Seidell JC, Muller DC, Sorkin JD, Andres R (1992) Fasting respiratory exchange ratio and resting metabolic rate as predictors of weight gain: the Baltimore longitudinal study on aging. Int J Obes Relat Metab Disord 16:667–674

    CAS  PubMed  Google Scholar 

  • Seiler SE, Koves TR, Gooding JR, Wong KE, Stevens RD, Ilkayeva OR, Wittmann AH, DeBalsi KL, Davies MN, Lindeboom L, Schrauwen P, Schrauwen-Hinderling VB, Muoio DM (2015) Carnitine acetyltransferase mitigates metabolic inertia and muscle fatigue during exercise. Cell Metab 22:65–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidossis LS, Gastaldelli A, Klein S, Wolfe RR (1997) Regulation of plasma fatty acid oxidation during low- and high-intensity exercise. Am J Phys 272:E1065–E1070

    CAS  Google Scholar 

  • Simoneau JA, Veerkamp JH, Turcotte LP, Kelley DE (1999) Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J 13:2051–2060

    Article  CAS  PubMed  Google Scholar 

  • Slusher AL, Whitehurst M, Zoeller RF, Mock JT, Maharaj A, Huang CJ (2015) Brain-derived neurotrophic factor and substrate utilization following acute aerobic exercise in obese individuals. J Neuroendocrinol 27:370–376

    Article  CAS  PubMed  Google Scholar 

  • Smirnova E, Goldberg EB, Makarova KS, Lin L, Brown WJ, Jackson CL (2006) ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep 7:106–113

    Article  CAS  PubMed  Google Scholar 

  • Smith BK, Jain SS, Rimbaud S, Dam A, Quadrilatero J, Ventura-Clapier R, Bonen A, Holloway GP (2011) FAT/CD36 is located on the outer mitochondrial membrane, upstream of long-chain acyl-CoA synthetase, and regulates palmitate oxidation. Biochem J 437:125–134

    Article  CAS  PubMed  Google Scholar 

  • Smith BK, Perry CG, Koves TR, Wright DC, Smith JC, Neufer PD, Muoio DM, Holloway GP (2012) Identification of a novel malonyl-CoA IC (50) for CPT-I: implications for predicting in vivo fatty acid oxidation rates. Biochem J 448:13–20

    Article  CAS  PubMed  Google Scholar 

  • Søndergaard E, Andersen IR, Sørensen LP, Gormsen LC, Nielsen S (2017) Lipoprotein lipase activity does not predict very low-density lipoprotein-triglyceride fatty acid oxidation during exercise. Scand J Med Sci Sports 27:474–481

    Article  PubMed  Google Scholar 

  • Sondergaard E, Rahbek I, Sorensen LP, Christiansen JS, Gormsen LC, Jensen MD, Nielsen S (2011) Effects of exercise on VLDL-triglyceride oxidation and turnover. Am J Physiol Endocrinol Metab 300:E939–E944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks LM (2017) Exercise training response heterogeneity: physiological and molecular insights. Diabetologia 60:2329–2336

    Article  PubMed  Google Scholar 

  • Stallknecht B, Kiens B, Helge JW, Richter EA, Galbo H (2004) Interstitial glycerol concentrations in human skeletal muscle and adipose tissue during graded exercise. Acta Physiol Scand 180:367–377

    Article  CAS  PubMed  Google Scholar 

  • Stallknecht B, Lorentsen J, Enevoldsen LH, Bulow J, Biering-Sorensen F, Galbo H, Kjaer M (2001) Role of the sympathoadrenergic system in adipose tissue metabolism during exercise in humans. J Physiol 536:283–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanford KI, Lynes MD, Takahashi H, Baer LA, Arts PJ, May FJ, Lehnig AC, Middelbeek RJW, Richard JJ, So K, Chen EY, Gao F, Narain NR, Distefano G, Shettigar VK, Hirshman MF, Ziolo MT, Kiebish MA, Tseng YH, Coen PM, Goodyear LJ (2018) 12,13-diHOME: an exercise-induced Lipokine that increases skeletal muscle fatty acid uptake. Cell Metab 27:1111–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starling RD, Trappe TA, Parcell AC, Kerr CG, Fink WJ, Costill DL (1997) Effects of diet on muscle triglyceride and endurance performance. J Appl Physiol (1985) 82:1185–1189

    Article  CAS  Google Scholar 

  • Starritt EC, Howlett RA, Heigenhauser GJ, Spriet LL (2000) Sensitivity of CPT I to malonyl-CoA in trained and untrained human skeletal muscle. Am J Physiol Endocrinol Metab 278:E462–E468

    Article  CAS  PubMed  Google Scholar 

  • Steffan HG, Elliott W, Miller WC, Fernhall B (1999) Substrate utilization during submaximal exercise in obese and normal-weight women. Eur J Appl Physiol Occup Physiol 80:233–239

    Article  CAS  PubMed  Google Scholar 

  • Steffensen CH, Roepstorff C, Madsen M, Kiens B (2002) Myocellular triacylglycerol breakdown in females but not in males during exercise. Am J Physiol Endocrinol Metab 282:E634–E642

    Article  CAS  PubMed  Google Scholar 

  • Stephens NA, Sparks LM (2015) Resistance to the beneficial effects of exercise in type 2 diabetes: are some individuals programmed to fail? J Clin Endocrinol Metab 100:43–52

    Article  CAS  PubMed  Google Scholar 

  • Storlien L, Oakes ND, Kelley DE (2004) Metabolic flexibility. Proc Nutr Soc 63:363–368

    Article  CAS  PubMed  Google Scholar 

  • Talanian JL, Tunstall RJ, Watt MJ, Duong M, Perry CG, Steinberg GR, Kemp BE, Heigenhauser GJ, Spriet LL (2006) Adrenergic regulation of HSL serine phosphorylation and activity in human skeletal muscle during the onset of exercise. Am J Physiol Regul Integr Comp Physiol 291:R1094–R1099

    Article  CAS  PubMed  Google Scholar 

  • Tanner CJ, Barakat HA, Dohm GL, Pories WJ, Mac Donald KG, Cunningham PR, Swanson MS, Houmard JA (2002) Muscle fiber type is associated with obesity and weight loss. Am J Physiol Endocrinol Metab 282:E1191–E1196

    Article  CAS  PubMed  Google Scholar 

  • Taskinen MR, Nikkila EA (1980) Effect of acute vigorous exercise on lipoprotein lipase activity of adipose tissue and skeletal muscle in physically active men. Artery 6:471–483

    CAS  PubMed  Google Scholar 

  • Thyfault JP, Kraus RM, Hickner RC, Howell AW, Wolfe RR, Dohm GL (2004) Impaired plasma fatty acid oxidation in extremely obese women. Am J Physiol Endocrinol Metab 287:E1076–E1081

    Article  CAS  PubMed  Google Scholar 

  • Turcotte LP, Richter EA, Kiens B (1992) Increased plasma FFA uptake and oxidation during prolonged exercise in trained vs. untrained humans. Am J Phys 262:E791–E799

    CAS  Google Scholar 

  • Turcotte LP, Swenberger JR, Tucker MZ, Yee AJ, Trump G, Luiken JJ, Bonen A (2000) Muscle palmitate uptake and binding are saturable and inhibited by antibodies to FABP (PM). Mol Cell Biochem 210:53–63

    Article  CAS  PubMed  Google Scholar 

  • van Hall G, Sacchetti M, Radegran G, Saltin B (2002) Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery. J Physiol 543:1047–1058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536:295–304

    Article  PubMed  PubMed Central  Google Scholar 

  • van Loon LJ, Koopman R, Stegen JH, Wagenmakers AJ, Keizer HA, Saris WH (2003) Intramyocellular lipids form an important substrate source during moderate intensity exercise in endurance-trained males in a fasted state. J Physiol 553:611–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Loon LJ, Thomason-Hughes M, Constantin-Teodosiu D, Koopman R, Greenhaff PL, Hardie DG, Keizer HA, Saris WH, Wagenmakers AJ (2005) Inhibition of adipose tissue lipolysis increases intramuscular lipid and glycogen use in vivo in humans. Am J Physiol Endocrinol Metab 289:E482–E493

    Article  PubMed  CAS  Google Scholar 

  • Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald IA, Greenhaff PL (2011) Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol 589:963–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt MJ, Heigenhauser GJ, Dyck DJ, Spriet LL (2002) Intramuscular triacylglycerol, glycogen and acetyl group metabolism during 4 h of moderate exercise in man. J Physiol 541(Pt 3):969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt MJ, Holmes AG, Steinberg GR, Mesa JL, Kemp BE, Febbraio MA (2004b) Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am J Physiol Endocrinol Metab 287(1):E120–E127

    Article  CAS  PubMed  Google Scholar 

  • Watt MJ, Steinberg GR, Chan S, Garnham A, Kemp BE, Febbraio MA (2004a) Beta-adrenergic stimulation of skeletal muscle HSL can be overridden by AMPK signaling. FASEB J 18(12):1445–1446

    Article  CAS  PubMed  Google Scholar 

  • Whitfield J, Paglialunga S, Smith BK, Miotto PM, Simnett G, Robson HL, Jain SS, Herbst EAF, Desjardins EM, Dyck DJ, Spriet LL, Steinberg GR, Holloway GP (2017) Ablating TBC1D1 impairs contraction-induced sarcolemmal glucose transporter type 4 redistribution, but not insulin-mediated responses in rats. J Biol Chem 292(40):16653–16664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicks SE, Vandanmagsar B, Haynie KR, Fuller SE, Warfel JD, Stephens JM, Wang M, Han X, Zhang J, Noland RC, Mynatt RL (2015) Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism. Proc Natl Acad Sci U S A 112:E3300–E3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtaszewski JF, Nielsen P, Hansen BF, Richter EA, Kiens B (2000) Isoform-specific and exercise intensity-dependent activation of 5'-AMP-activated protein kinase in human skeletal muscle. J Physiol 528(Pt 1):221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolfe RR, Klein S, Carraro F, Weber JM (1990) Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Phys 258(2 Pt 1):E382–E389

    CAS  Google Scholar 

  • Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F (2012) FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou K, Hinkley JM, Park S, Zheng D, Jones TE, Pories WJ, Hornby PJ, Lenhard J, Dohm GL, Houmard JA (2019) Altered tricarboxylic acid cycle flux in primary myotubes from severely obese humans. Int J Obes 43:895–905

    Article  CAS  Google Scholar 

  • Zurlo F, Lillioja S, Esposito-Del PA, Nyomba BL, Raz I, Saad MF, Swinburn BA, Knowler WC, Bogardus C, Ravussin E (1990) Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Phys 259:E650–E657

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Kiens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fritzen, A.M., Broskey, N.T., Lundsgaard, A.M., Dohm, G.L., Houmard, J.A., Kiens, B. (2022). Regulation of Fatty Acid Oxidation in Skeletal Muscle During Exercise: Effect of Obesity. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_8

Download citation

Publish with us

Policies and ethics