Skip to main content

Exercise: Thermodynamic and Bioenergetic Principles

  • Chapter
  • First Online:
Exercise Metabolism

Abstract

The ATP energy charge needed to generate and sustain life is derived from the degradation of organic substrates with higher free energy to products with lower free energy. This difference in free energy is most efficiently harnessed by the mitochondrial oxidative phosphorylation (OXPHOS) system, which uses the complete oxidation of products to drive a series of thermodynamically based energy transformation steps to maximize the synthesis of ATP energy charge. Physical activity can dramatically increase the rate at which this ATP free energy charge is dissipated and therefore must be met by an equivalent increase in ATP production rate to sustain the activity. OXPHOS efficiency is obviously important to physical performance. As presented in this review, the efficiency of the OXPHOS system can be influenced by many factors that either optimize or at least partially decouple one or more energy transformation steps. Although much remains to be learned regarding how such processes are regulated, it is clear that modulating OXPHOS efficiency can have profound implications for exercise performance as well as overall health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldiss P, Betts J, Sale C, Pope M, Budge H, Symonds ME (2018) Exercise-induced ‘browning’ of adipose tissues. Metabolism 81:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bak S, Leon IR, Jensen ON, Hojlund K (2013) Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle. J Proteome Res 12:4327–4339

    Article  CAS  PubMed  Google Scholar 

  • Bertholet AM, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, Vidoni S, Garrity R, Cho J, Terada N, Wallace DC, Spiegelman BM, Kirichok Y (2019) H(+) transport is an integral function of the mitochondrial ADP/ATP carrier. Nature 571:515–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93

    Article  CAS  PubMed  Google Scholar 

  • Brand MD, Pakay JL, Ocloo A, Kokoszka J, Wallace DC, Brookes PS, Cornwall EJ (2005) The basal proton conductance of mitochondria depends on adenine nucleotide translocase content. Biochem J 392:353–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buemann B, Schierning B, Toubro S, Bibby BM, Sorensen T, Dalgaard L, Pedersen O, Astrup A (2001) The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency. Int J Obes Relat Metab Disord 25:467–471

    Article  CAS  PubMed  Google Scholar 

  • Chen W, London R, Murphy E, Steenbergen C (1998) Regulation of the Ca2+ gradient across the sarcoplasmic reticulum in perfused rabbit heart. A 19F nuclear magnetic resonance study. Circ Res 83:898–907

    Article  CAS  PubMed  Google Scholar 

  • Claypool SM (2009) Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Biochim Biophys Acta 1788:2059–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahl R, Larsen S, Dohlmann TL, Qvortrup K, Helge JW, Dela F, Prats C (2015) Three-dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization. Acta Physiol (Oxf) 213:145–155

    Article  CAS  Google Scholar 

  • Davidson MT, Grimsrud PA, Lai L, Draper JA, Fisher-Wellman KH, Narowski TM, Abraham DM, Koves TR, Kelly DP, Muoio DM (2020) Extreme acetylation of the cardiac mitochondrial proteome does not promote heart failure. Circ Res 127:1094–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies KJ, Quintanilha AT, Brooks GA, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205

    Article  CAS  PubMed  Google Scholar 

  • Davies KM, Strauss M, Daum B, Kief JH, Osiewacz HD, Rycovska A, Zickermann V, Kuhlbrandt W (2011) Macromolecular organization of ATP synthase and complex I in whole mitochondria. Proc Natl Acad Sci U S A 108:14121–14126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Detmer SA, Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 8:870–879

    Article  CAS  PubMed  Google Scholar 

  • Di MS, Venditti P (2001) Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 10:125–140

    Article  Google Scholar 

  • Divakaruni AS, Brand MD (2011) The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda) 26:192–205

    CAS  Google Scholar 

  • Dudkina NV, Eubel H, Keegstra W, Boekema EJ, Braun HP (2005) Structure of a mitochondrial supercomplex formed by respiratory-chain complexes I and III. Proc Natl Acad Sci U S A 102:3225–3229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otin M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J 22:4103–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387:90–94

    Article  CAS  PubMed  Google Scholar 

  • Fisher-Wellman KH, Lin CT, Ryan TE, Reese LR, Gilliam LA, Cathey BL, Lark DS, Smith CD, Muoio DM, Neufer PD (2015) Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit. Biochem J 467:271–280

    Article  CAS  PubMed  Google Scholar 

  • Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25:319–324

    Article  CAS  PubMed  Google Scholar 

  • Friedman JR, Mourier A, Yamada J, McCaffery JM, Nunnari J (2015) MICOS coordinates with respiratory complexes and lipids to establish mitochondrial inner membrane architecture. elife 4

    Google Scholar 

  • Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443

    Article  CAS  PubMed  Google Scholar 

  • Gilkerson RW, Selker JM, Capaldi RA (2003) The cristal membrane of mitochondria is the principal site of oxidative phosphorylation. FEBS Lett 546:355–358

    Article  CAS  PubMed  Google Scholar 

  • Glancy B, Hartnell LM, Malide D, Yu ZX, Combs CA, Connelly PS, Subramaniam S, Balaban RS (2015) Mitochondrial reticulum for cellular energy distribution in muscle. Nature 523:617–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golding EM, Teague WE Jr, Dobson GP (1995) Adjustment of K' to varying pH and pMg for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria permitting quantitative bioenergetic assessment. J Exp Biol 198:1775–1782

    Article  CAS  PubMed  Google Scholar 

  • Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD (2015) Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J Biol Chem 290:209–227

    Article  CAS  PubMed  Google Scholar 

  • Gu J, Wu M, Guo R, Yan K, Lei J, Gao N, Yang M (2016) The architecture of the mammalian respirasome. Nature 537:639–643

    Article  CAS  PubMed  Google Scholar 

  • Gurd BJ, Holloway GP, Yoshida Y, Bonen A (2012) In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner. Metabolism 61:733–741

    Article  CAS  PubMed  Google Scholar 

  • Halling JF, Jessen H, Nohr-Meldgaard J, Buch BT, Christensen NM, Gudiksen A, Ringholm S, Neufer PD, Prats C, Pilegaard H (2019) PGC-1alpha regulates mitochondrial properties beyond biogenesis with aging and exercise training. Am J Physiol Endocrinol Metab 317:E513–E525

    Article  CAS  PubMed  Google Scholar 

  • Halling JF, Ringholm S, Olesen J, Prats C, Pilegaard H (2017) Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1alpha dependent manner. Exp Gerontol 96:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2:817–828

    Article  CAS  PubMed  Google Scholar 

  • Havel RJ, Pernow B, Jones NL (1967) Uptake and release of free fatty acids and other metabolites in the legs of exercising men. J Appl Physiol 23:90–99

    Article  CAS  PubMed  Google Scholar 

  • Heaton GM, Wagenvoord RJ, Kemp A Jr, Nicholls DG (1978) Brown-adipose-tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem 82:515–521

    Article  CAS  PubMed  Google Scholar 

  • Heden TD, Johnson JM, Ferrara PJ, Eshima H, Verkerke ARP, Wentzler EJ, Siripoksup P, Narowski TM, Coleman CB, Lin CT, Ryan TE, Reidy PT, de Castro Bras LE, Karner CM, Burant CF, Maschek JA, Cox JE, Mashek DG, Kardon G, Boudina S, Zeczycki TN, Rutter J, Shaikh SR, Vance JE, Drummond MJ, Neufer PD, Funai K (2019) Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity. Sci Adv 5:eaax8352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heden TD, Neufer PD, Funai K (2016) Looking beyond structure: membrane phospholipids of skeletal muscle mitochondria. Trends Endocrinol Metab 27:553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriquez-Olguin C, Knudsen JR, Raun SH, Li Z, Dalbram E, Treebak JT, Sylow L, Holmdahl R, Richter EA, Jaimovich E, Jensen TE (2019) Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun 10:4623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH, Kleinert M, Humphrey SJ, Yang P, Holliday M, Trefely S, Fazakerley DJ, Stockli J, Burchfield JG, Jensen TE, Jothi R, Kiens B, Wojtaszewski JF, Richter EA, James DE (2015) Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab 22:922–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Shu L, Huang X, Yu J, Li L, Gong L, Yang M, Wu Z, Gao Z, Zhao Y, Chen L, Song Z (2020) OPA1 and MICOS Regulate mitochondrial crista dynamics and formation. Cell Death Dis 11:940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson MJ, Edwards RH, Symons MC (1985) Electron spin resonance studies of intact mammalian skeletal muscle. Biochim Biophys Acta 847:185–190

    Article  CAS  PubMed  Google Scholar 

  • Jans DC, Wurm CA, Riedel D, Wenzel D, Stagge F, Deckers M, Rehling P, Jakobs S (2013) STED super-resolution microscopy reveals an array of MINOS clusters along human mitochondria. Proc Natl Acad Sci U S A 110:8936–8941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeneson JA, Bruggeman FJ (2004) Robust homeostatic control of quadriceps pH during natural locomotor activity in man. FASEB J 18:1010–1012

    Article  CAS  PubMed  Google Scholar 

  • Kammermeier H (1987) Interrelationship between the free energy change of ATP-hydrolysis, cytosolic inorganic phosphate and cardiac performance during hypoxia and reoxygenation. Biomed Biochim Acta 46:S499–S504

    CAS  PubMed  Google Scholar 

  • Kanter MM (1994) Free radicals, exercise, and antioxidant supplementation. Int J Sport Nutr 4:205–220

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg M (2009) Cardiolipin and mitochondrial carriers. Biochim Biophys Acta 1788:2048–2058

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg M, Winkler E (1985) The reconstituted isolated uncoupling protein is a membrane potential driven H+ translocator. EMBO J 4:3087–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch LG, Britton SL (2018) Theoretical and biological evaluation of the link between low exercise capacity and disease risk. Cold Spring Harb Perspect Med 8

    Google Scholar 

  • Konopka AR, Suer MK, Wolff CA, Harber MP (2014) Markers of human skeletal muscle mitochondrial biogenesis and quality control: effects of age and aerobic exercise training. J Gerontol A Biol Sci Med Sci 69:371–378

    Article  CAS  PubMed  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416:15–18

    Article  CAS  PubMed  Google Scholar 

  • Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC (2004) Structural basis of mitochondrial tethering by mitofusin complexes. Science 305:858–862

    Article  CAS  PubMed  Google Scholar 

  • Lai L, Wang M, Martin OJ, Leone TC, Vega RB, Han X, Kelly DP (2014) A role for peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) in the regulation of cardiac mitochondrial phospholipid biosynthesis. J Biol Chem 289:2250–2259

    Article  CAS  PubMed  Google Scholar 

  • Lark DS, Torres MJ, Lin CT, Ryan TE, Anderson EJ, Neufer PD (2016) Direct real-time quantification of mitochondrial oxidative phosphorylation efficiency in permeabilized skeletal muscle myofibers. Am J Physiol Cell Physiol 311:C239–C245

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitner BP, Huang S, Brychta RJ, Duckworth CJ, Baskin AS, McGehee S, Tal I, Dieckmann W, Gupta G, Kolodny GM, Pacak K, Herscovitch P, Cypess AM, Chen KY (2017) Mapping of human brown adipose tissue in lean and obese young men. Proc Natl Acad Sci U S A 114:8649–8654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loschen G, Azzi A, Richter C, Flohe L (1974) Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 42:68–72

    Article  CAS  PubMed  Google Scholar 

  • Malin SK, Braun B (2016) Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc Sport Sci Rev 44:4–11

    Article  PubMed  Google Scholar 

  • Malka F, Guillery O, Cifuentes-Diaz C, Guillou E, Belenguer P, Lombes A, Rojo M (2005) Separate fusion of outer and inner mitochondrial membranes. EMBO Rep 6:853–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361:462–469

    Article  CAS  PubMed  Google Scholar 

  • Meyer R, Wiseman R (2012) The metabolic systems: control of ATP synthesis in skeletal muscle. In: ACSM’s advanced exercise physiology, 2nd edn. Lippincott, Williams & Wilkins, Baltimore

    Google Scholar 

  • Mielke C, Lefort N, McLean CG, Cordova JM, Langlais PR, Bordner AJ, Te JA, Ozkan SB, Willis WT, Mandarino LJ (2014) Adenine nucleotide translocase is acetylated in vivo in human muscle: Modeling predicts a decreased ADP affinity and altered control of oxidative phosphorylation. Biochemistry 53:3817–3829

    Article  CAS  PubMed  Google Scholar 

  • Mileykovskaya E, Dowhan W (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 1788:2084–2091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mileykovskaya E, Dowhan W (2014) Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids 179:42–48

    Article  CAS  PubMed  Google Scholar 

  • Mishra P, Varuzhanyan G, Pham AH, Chan DC (2015) Mitochondrial dynamics is a distinguishing feature of skeletal muscle fiber types and regulates organellar compartmentalization. Cell Metab 22:1033–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan TE, Cobb LA, Short FA, RaGDR R (1971) Effects of long-term exercise on human mitochondria. Plenum Press, New York

    Book  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  CAS  PubMed  Google Scholar 

  • Musatov A, Sedlak E (2017) Role of cardiolipin in stability of integral membrane proteins. Biochimie 142:102–111

    Article  CAS  PubMed  Google Scholar 

  • Nicholls D, Ferguson S (2013) Bioenergetics. Elsevier LTD, London

    Google Scholar 

  • Nicholls DG, Rial E (1999) A history of the first uncoupling protein, UCP1. J Bioenerg Biomembr 31:399–406

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Gejl KD, Hey-Mogensen M, Holmberg HC, Suetta C, Krustrup P, Elemans CPH, Ortenblad N (2017) Plasticity in mitochondrial cristae density allows metabolic capacity modulation in human skeletal muscle. J Physiol 595:2839–2847

    Article  CAS  PubMed  Google Scholar 

  • Nookaew I, Svensson PA, Jacobson P, Jernas M, Taube M, Larsson I, Andersson-Assarsson JC, Sjostrom L, Froguel P, Walley A, Nielsen J, Carlsson LM (2013) Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men. J Clin Endocrinol Metab 98:E370–E378

    Article  CAS  PubMed  Google Scholar 

  • Nury H, Dahout-Gonzalez C, Trezeguet V, Lauquin G, Brandolin G, Pebay-Peyroula E (2005) Structural basis for lipid-mediated interactions between mitochondrial ADP/ATP carrier monomers. FEBS Lett 579:6031–6036

    Article  CAS  PubMed  Google Scholar 

  • Overmyer KA, Evans CR, Qi NR, Minogue CE, Carson JJ, Chermside-Scabbo CJ, Koch LG, Britton SL, Pagliarini DJ, Coon JJ, Burant CF (2015) Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic changes in mitochondrial protein acetylation. Cell Metab 21:468–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palade GE (1952) The fine structure of mitochondria. Anat Rec 114:427–451

    Article  CAS  PubMed  Google Scholar 

  • Paradies G, Paradies V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837:408–417

    Article  CAS  PubMed  Google Scholar 

  • Parker L, Stepto NK, Shaw CS, Serpiello FR, Anderson M, Hare DL, Levinger I (2016) Acute high-intensity interval exercise-induced redox signaling is associated with enhanced insulin sensitivity in obese middle-aged men. Front Physiol 7:411

    Article  PubMed  PubMed Central  Google Scholar 

  • Pennington ER, Fix A, Sullivan EM, Brown DA, Kennedy A, Shaikh SR (2017) Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes. Biochim Biophys Acta Biomembr 1859:257–267

    Article  CAS  PubMed  Google Scholar 

  • Perry CG, Kane DA, Herbst EA, Mukai K, Lark DS, Wright DC, Heigenhauser GJ, Neufer PD, Spriet LL, Holloway GP (2012) Mitochondrial creatine kinase activity and phosphate shuttling are acutely regulated by exercise in human skeletal muscle. J Physiol 590:5475–5486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588:4795–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfanner N, van der Laan M, Amati P, Capaldi RA, Caudy AA, Chacinska A, Darshi M, Deckers M, Hoppins S, Icho T, Jakobs S, Ji J, Kozjak-Pavlovic V, Meisinger C, Odgren PR, Park SK, Rehling P, Reichert AS, Sheikh MS, Taylor SS, Tsuchida N, van der Bliek AM, van der Klei IJ, Weissman JS, Westermann B, Zha J, Neupert W, Nunnari J (2014) Uniform nomenclature for the mitochondrial contact site and cristae organizing system. J Cell Biol 204:1083–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88:1243–1276

    Article  CAS  PubMed  Google Scholar 

  • Prigogine I (1978) Time, structure, and fluctuations. Science 201:777–785

    Article  CAS  PubMed  Google Scholar 

  • Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD (2013) Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1:304–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del PP, Foretz M, Scorrano L, Rudolf R, Sandri M (2010) Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J 29:1774–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruprecht JJ, Kunji ERS (2020) The SLC25 mitochondrial carrier family: structure and mechanism. Trends Biochem Sci 45:244–258

    Article  CAS  PubMed  Google Scholar 

  • Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A, Jackson MJ (2013) Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal 18:603–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheele C, Nielsen S, Pedersen BK (2009) ROS and myokines promote muscle adaptation to exercise. Trends Endocrinol Metab 20:95–99

    Article  CAS  PubMed  Google Scholar 

  • Scorrano L, De Matteis MA, Emr S, Giordano F, Hajnoczky G, Kornmann B, Lackner LL, Levine TP, Pellegrini L, Reinisch K, Rizzuto R, Simmen T, Stenmark H, Ungermann C, Schuldiner M (2019) Coming together to define membrane contact sites. Nat Commun 10:1287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sebastian D, Hernandez-Alvarez MI, Segales J, Sorianello E, Munoz JP, Sala D, Waget A, Liesa M, Paz JC, Gopalacharyulu P, Oresic M, Pich S, Burcelin R, Palacin M, Zorzano A (2012) Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc Natl Acad Sci U S A 109:5523–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CD, Schmidt CA, Lin CT, Fisher-Wellman KH, Neufer PD (2020) Flux through mitochondrial redox circuits linked to nicotinamide nucleotide transhydrogenase generates counterbalance changes in energy expenditure. J Biol Chem 295:16207–16216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparks LM, Gemmink A, Phielix E, Bosma M, Schaart G, Moonen-Kornips E, Jorgensen JA, Nascimento EB, Hesselink MK, Schrauwen P, Hoeks J (2016) ANT1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity. Diabetologia 59:1030–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperelakis N (2021) Origin of Resting Membrane Potentials**Adapted and reprinted by permission from the author’s chapter 3 in PHYSIOLOGY. In: Sperelakis N, Banks RO (eds). Copyright © 1993 by Nicholas Sperelakis and Robert O. Banks. Published by Little, Brown and Company Cell Physiology Source Book. Academic Press, 1995, pp 67–90

    Google Scholar 

  • St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  CAS  PubMed  Google Scholar 

  • Tsuboyama-Kasaoka N, Tsunoda N, Maruyama K, Takahashi M, Kim H, Ikemoto S, Ezaki O (1998) Up-regulation of uncoupling protein 3 (UCP3) mRNA by exercise training and down-regulation of UCP3 by denervation in skeletal muscles. Biochem Biophys Res Commun 247:498–503

    Article  CAS  PubMed  Google Scholar 

  • Urso ML, Clarkson PM (2003) Oxidative stress, exercise, and antioxidant supplementation. Toxicology 189:41–54

    Article  CAS  PubMed  Google Scholar 

  • Vassilopoulos A, Pennington JD, Andresson T, Rees DM, Bosley AD, Fearnley IM, Ham A, Flynn CR, Hill S, Rose KL, Kim HS, Deng CX, Walker JE, Gius D (2014) SIRT3 deacetylates ATP synthase F1 complex proteins in response to nutrient- and exercise-induced stress. Antioxid Redox Signal 21:551–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Mootha V, Cortright R, Muoio DM, Lowell BB (2000) Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275:16258–16266

    Article  CAS  PubMed  Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J 281(Pt 1):21–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkens V, Kohl W, Busch K (2013) Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. J Cell Sci 126:103–116

    Article  CAS  PubMed  Google Scholar 

  • Williams AS, Koves TR, Davidson MT, Crown SB, Fisher-Wellman KH, Torres MJ, Draper JA, Narowski TM, Slentz DH, Lantier L, Wasserman DH, Grimsrud PA, Muoio DM (2020) Disruption of acetyl-lysine turnover in muscle mitochondria promotes insulin resistance and redox stress without overt respiratory dysfunction. Cell Metab 31:131–147

    Article  CAS  PubMed  Google Scholar 

  • Yoshizaki K, Watari H, Radda GK (1990) Role of phosphocreatine in energy transport in skeletal muscle of bullfrog studied by 31P-NMR. Biochim Biophys Acta 1051:144–150

    Article  CAS  PubMed  Google Scholar 

  • Yun AJ, Lee PY, Doux JD, Conley BR (2006) A general theory of evolution based on energy efficiency: its implications for diseases. Med Hypotheses 66:664–670

    Article  PubMed  Google Scholar 

  • Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig AJ, Boss O, Kim YB, Zheng XX, Wheeler MB, Shulman GI, Chan CB, Lowell BB (2001) Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105:745–755

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Bak S, Pedersen AJ, Jensen ON, Hojlund K (2014) Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. J Proteome Res 13:2359–2369

    Article  CAS  PubMed  Google Scholar 

  • Zurlo F, Larson K, Bogardus C, Ravussin E (1990) Skeletal muscle metabolism is a major determinant of resting energy expenditure. J Clin Invest 86:1423–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henriette Pilegaard or P. Darrell Neufer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Halling, J.F., Gudiksen, A., Pilegaard, H., Neufer, P.D. (2022). Exercise: Thermodynamic and Bioenergetic Principles. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_3

Download citation

Publish with us

Policies and ethics