Skip to main content

Overview of Exercise Metabolism

  • Chapter
  • First Online:
Exercise Metabolism

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1934 Accesses

Abstract

The supply of ATP is critical for ongoing skeletal muscle contractile activity during exercise. The metabolic pathways in muscle that ensure continual ATP supply are PCr degradation, glycolysis, and the oxidative metabolism of CHO (muscle glycogen and blood glucose) and fat (muscle triglyceride and plasma fatty acids). The relative contributions of these metabolic pathways are primarily determined by exercise intensity and duration but also influenced by training status, preceding diet, sex, and age. Various interventions designed to enhance sporting performance target the availability and utilization of metabolic substrates. In addition, metabolic perturbations and metabolic communication during exercise play key roles in the acute and adaptive responses to exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlborg G, Felig P, Hagenfeldt L et al (1974) Substrate turnover during prolonged exercise in man. J Clin Invest 53:1080–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angus DJ, Febbraio MA, Hargreaves M (2002) Plasma glucose kinetics during prolonged exercise in trained humans when fed carbohydrate. Am J Phys 283:E573–E577

    CAS  Google Scholar 

  • Brooks GA (2020) Lactate as a fulcrum of metabolism. Redox Biol 35:101454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cermak NM, van Loon LJ (2013) The use of carbohydrate during exercise as an ergogenic aid. Sports Med 43:1139–1155

    Article  PubMed  Google Scholar 

  • Chen Z-P, McConell GK, Michell BJ et al (2000) AMPK signalling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Phys 279:E1202–E1206

    CAS  Google Scholar 

  • Chin ER (2010) Intracellular Ca2+ signaling in skeletal muscle: decoding a complex message. Exerc Sport Sci Rev 38:76–85

    Article  PubMed  Google Scholar 

  • Coggan AR, Coyle EF (1987) Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol 63:2388–2395

    Article  CAS  PubMed  Google Scholar 

  • Coggan AR, Coyle EF (1988) Effect of carbohydrate feedings during high-intensity exercise. J Appl Physiol 65:1703–1709

    Article  CAS  PubMed  Google Scholar 

  • Coyle EF, Hagberg JM, Hurley BF et al (1983) Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol 55:230–235

    Article  CAS  PubMed  Google Scholar 

  • Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17:162–184

    Article  CAS  PubMed  Google Scholar 

  • Febbraio MA (2000) Does muscle function and metabolism affect exercise performance in the heat? Exerc Sport Sci Rev 28:171–176

    CAS  PubMed  Google Scholar 

  • Flores-Opazo M, McGee SL, Hargreaves M (2020) Exercise and GLUT4. Exerc Sport Sci Rev 48:110–118

    Article  PubMed  Google Scholar 

  • Greenhaff PL, Nevill ME, Söderlund K et al (1994) The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol 478:149–155

    Article  PubMed  PubMed Central  Google Scholar 

  • Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2:817–828

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Hargreaves M, Joyner MJ et al (2014) Integrative biology of exercise. Cell 159:738–749

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Leckey JJ (2015) Carbohydrate dependence during prolonged, intense endurance exercise. Sports Med 45:S5–S12

    Article  PubMed  Google Scholar 

  • Hawley JA, Lundby C, Cotter JD et al (2018) Maximising cellular adaptation to endurance exercise in skeletal muscle. Cell Metab 27:962–976

    Article  CAS  PubMed  Google Scholar 

  • Hoffman NJ, Parker BL, Chaudhuri R et al (2015) Global phosphoproteomic analyses of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab 22:922–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horowitz JF, Klein S (2000) Lipid metabolism during endurance exercise. Am J Clin Nutr 72:S558–S563

    Article  Google Scholar 

  • Howarth KR, Phillips SM, MacDonald MJ et al (2010) Effect of glycogen availability of human skeletal muscle turnover during exercise and recovery. J Appl Physiol 109:431–438

    Article  CAS  PubMed  Google Scholar 

  • Hughson RL, Tschakovsky ME, Houston ME (2001) Regulation of oxygen consumption at the onset of exercise. Exerc Sci Sport Rev 29:129–133

    Article  CAS  Google Scholar 

  • Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86:205–243

    Article  CAS  PubMed  Google Scholar 

  • Medbø JI, Tabata I (1989) Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 67:1881–1886

    Article  PubMed  Google Scholar 

  • Medbø JI, Tabata I (1993) Anaerobic energy release in working muscle during 30s to 3 min of exhausting bicycling. J Appl Physiol 75:1654–1660

    Article  PubMed  Google Scholar 

  • McConell GK (2020) It’s well and truly time to stop stating that AMPK regulates glucose uptake and fat oxidation during exercise. Am J Phys 318:E564–E567

    CAS  Google Scholar 

  • McGee SL, Hargreaves M (2019) Epigenetics and exercise. Trends Endocrinol Metab 30:636–645

    Article  CAS  PubMed  Google Scholar 

  • Murphy RM, Watt MJ, Febbraio MA (2020) Metabolic communication during exercise. Nat Metab 2:805–816

    Article  PubMed  Google Scholar 

  • Murray AJ (2016) Energy metabolism and the high-altitude environment. Exp Physiol 101:23–27

    Article  CAS  PubMed  Google Scholar 

  • Needham EJ, Humphrey SJ, Cooke KC et al (2019) Phosphoproteomics of acute cell stressors targeting exercise signalling networks reveal drug interactions regulating protein secretion. Cell Rep 29:1524–1536

    Article  CAS  PubMed  Google Scholar 

  • Ørtenblad N, Westerblad H, Nielsen J (2013) Muscle glycogen stores and fatigue. J Physiol 591:4405–4413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parolin ML, Chesley A, Matsos MP et al (1999) Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise. Am J Phys 277:E890–E900

    CAS  Google Scholar 

  • Ren J-M, Semenkovich CF, Holloszy JO (1993) Adaptation of muscle to creatine depletion: effect on GLUT-4 glucose transporter expression. Am J Phys 264:C146–C150

    Article  CAS  Google Scholar 

  • Rennie MJ, Edwards RH, Krywawych S et al (1981) Effect of exercise on protein turnover in man. Clin Sci 61:627–639

    Article  CAS  Google Scholar 

  • Richter EA, Ruderman NB, Gavras H et al (1982) Muscle glycogenolysis during exercise: dual control by epinephrine and contractions. Am J Phys 242:E25–E32

    Article  CAS  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS et al (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Phys 265:E380–E391

    CAS  Google Scholar 

  • Rose AJ, Hargreaves M (2003) Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol 553:303–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahlin K, Katz A, Broberg S (1990) Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Phys 259:C834–C841

    Article  CAS  Google Scholar 

  • Seaborne RA, Sharples AP (2020) The interplay between exercise metabolism, epigenetics and skeletal muscle remodeling. Exerc Sport Sci Rev 48:188–200

    Article  PubMed  Google Scholar 

  • Spriet LL, Howlett RA, Heigenhauser GJF (2000) An enzymatic approach to lactate production in human skeletal muscle during exercise. Med Sci Sports Exerc 32:756–763

    Article  CAS  PubMed  Google Scholar 

  • Stellingwerff T, Boon H, Jonkers RA et al (2007) Significant intramyocellular lipid use during prolonged cycling in endurance trained males as assessed by three different methodologies. Am J Phys 292:E1715–E1723

    CAS  Google Scholar 

  • Stephens TJ, Chen Z-P, Canny BJ et al (2002) Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise. Am J Phys 282:E688–E694

    CAS  Google Scholar 

  • Turcotte LP (2000) Muscle fatty acid uptake during exercise: possible mechanisms. Exerc Sport Sci Rev 28:4–9

    CAS  PubMed  Google Scholar 

  • van Loon LJ, Greenhaff PL, Constantin-Teodosiu D et al (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536:275–304

    Article  Google Scholar 

  • van Loon LJ, Thomason-Hughes M, Constantin-Teodosiu D et al (2005) Inhibition of adipose tissue lipolysis increases intramuscular lipid and glycogen use in vivo in humans. Am J Phys 289:E482–E493

    Google Scholar 

  • Wasserman DH (2009) Four grams of glucose. Am J Phys 296:E11–E21

    CAS  Google Scholar 

  • Watt MJ, Heigenhauser GJF, Dyck DJ et al (2002) Intramuscular triacylglycerol, glycogen and acetyl group metabolism during 4h of moderate exercise in man. J Physiol 541:969–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson SB, Phillips SM, Atherton PJ et al (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol 586:3701–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtaszewski JF, Nielsen P, Hansen BF et al (2000) Isoform-specific and exercise intensity-dependent activation of 5’-AMP-activated protein kinase in human skeletal muscle. J Physiol 528:221–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaspelkis BB, Castle AL, Ding Z (1999) Attenuating the decline in ATP arrests the exercise training-induced increases in muscle GLUT4 protein and citrate synthase activity. Acta Physiol 165:71–79

    Article  CAS  Google Scholar 

  • Yu M, Stepto NK, Chibalin AV et al (2003) Metabolic and mitogenic signal transduction in human skeletal muscle after intense cycling exercise. J Physiol 546:327–335

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Hargreaves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hargreaves, M. (2022). Overview of Exercise Metabolism. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_2

Download citation

Publish with us

Policies and ethics