Skip to main content

Metabolic Factors in Skeletal Muscle Fatigue

  • Chapter
  • First Online:
Exercise Metabolism

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

We here discuss metabolic causes of skeletal muscle fatigue with focus on peripheral fatigue, that is, negative transient effects on muscle contractility manifested as decreased force production, reduced shortening speed and/or slowed relaxation. We specifically address the following fatigue-related metabolic changes: (1) [ATP] normally remains almost constant but might decrease to critically low levels in severe fatigue where the accompanying transient increase in [ADP] would reduce shortening speed and hence power output. (2) The increase in inorganic phosphate ions (Pi) during intense exercise has a central role in fatigue by reducing the myofibrillar force generating capacity and Ca2+ sensitivity and by attenuating sarcoplasmic reticulum (SR) Ca2+ release. (3) Acidosis occurs during intense exercise and may depress myofibrillar contractile function; its importance is currently debated. (4) Increases in reactive oxygen/nitrogen species during intense exercise can induce long-lasting protein modifications that delay the recovery after exercise. (5) The depletion of intramyofibrillar glycogen during prolonged exercise is well correlated with decreased force due to impaired SR Ca2+ release. Thus, several metabolic alterations contribute to skeletal muscle fatigue, and the relative importance of these depends on factors such as the type of exercise, muscle fibre composition and the training status of the exercising individual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D et al (2018) Role of oxidative stress as key regulator of muscle wasting during cachexia. Oxidative Med Cell Longev 2018:2063179

    Article  CAS  Google Scholar 

  • Alghannam AF, Jedrzejewski D, Tweddle MG, Gribble H, Bilzon J, Thompson D et al (2016) Impact of muscle glycogen availability on the capacity for repeated exercise in man. Med Sci Sports Exerc 48(1):123–131

    Article  CAS  PubMed  Google Scholar 

  • Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88(1):287–332

    Article  CAS  PubMed  Google Scholar 

  • Allen DG, Clugston E, Petersen Y, Röder IV, Chapman B, Rudolf R (2011) Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue. J Appl Physiol 111(2):358–366

    Article  CAS  PubMed  Google Scholar 

  • Amann M, Wan HY, Thurston TS, Georgescu VP, Weavil JC (2020) On the influence of group III/IV muscle afferent feedback on endurance exercise performance. Exerc Sport Sci Rev 48(4):209–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey SJ, Gandra PG, Jones AM, Hogan MC, Nogueira L (2019) Incubation with sodium nitrite attenuates fatigue development in intact single mouse fibres at physiological PO2. J Physiol 597(22):5429–5443

    Article  CAS  PubMed  Google Scholar 

  • Baldwin KM, Klinkerfuss GH, Terjung RL, Mole PA, Holloszy JO (1972) Respiratory capacity of white, red, and intermediate muscle: adaptative response to exercise. Am J Phys 222(2):373–378

    Article  CAS  Google Scholar 

  • Bangsbo J, Madsen K, Kiens B, Richter EA (1996) Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. J Physiol 495(2):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barclay CJ, Woledge RC, Curtin NA (2007) Energy turnover for Ca2+ cycling in skeletal muscle. J Muscle Res Cell Motil 28(4–5):259–274

    Article  CAS  PubMed  Google Scholar 

  • Bergström J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen and physical performance. Acta Physiol Scand 71(2):140–150

    Article  PubMed  Google Scholar 

  • Bickel CS, Gregory CM, Dean JC (2011) Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur J Appl Physiol 111(10):2399–2407

    Article  PubMed  Google Scholar 

  • Bishop D (2000) Physiological predictors of flat-water kayak performance in women. Eur J Appl Physiol 82(1–2):91–97

    Article  CAS  PubMed  Google Scholar 

  • Blain GM, Mangum TS, Sidhu SK, Weavil JC, Hureau TJ, Jessop JE et al (2016) Group III/IV muscle afferents limit the intramuscular metabolic perturbation during whole body exercise in humans. J Physiol 594(18):5303–5315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth FW, Laye MJ (2009) Lack of adequate appreciation of physical exercise's complexities can pre-empt appropriate design and interpretation in scientific discovery. J Physiol 587(23):5527–5539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottinelli R, Reggiani C (2000) Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 73(2–4):195–262

    Article  CAS  PubMed  Google Scholar 

  • Brownstein CG, Millet GY, Thomas K (2021) Neuromuscular responses to fatiguing locomotor exercise. Acta Physiol (Oxf) 231(2):e13533

    Article  CAS  Google Scholar 

  • Bruton JD, Lännergren J, Westerblad H (1998) Effects of CO2-induced acidification on the fatigue resistance of single mouse muscle fibers at 28 °C. J Appl Physiol 85(2):478–483

    Article  CAS  PubMed  Google Scholar 

  • Bruton JD, Place N, Yamada T, Silva JP, Andrade FH, Dahlstedt AJ et al (2008) Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol 586(1):175–184

    Article  CAS  PubMed  Google Scholar 

  • Bruton JD, Aydin J, Yamada T, Shabalina IG, Ivarsson N, Zhang SJ et al (2010) Increased fatigue resistance linked to Ca2+-stimulated mitochondrial biogenesis in muscle fibres of cold-acclimated mice. J Physiol 588(21):4275–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnley M, Vanhatalo A, Fulford J, Jones AM (2010) Similar metabolic perturbations during all-out and constant force exhaustive exercise in humans: a 31P magnetic resonance spectroscopy study. Exp Physiol 95(7):798–807

    Article  CAS  PubMed  Google Scholar 

  • Cady EB, Jones DA, Lynn J, Newham DJ (1989) Changes in force and intracellular metabolites during fatigue of human skeletal muscle. J Physiol 418(1):311–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr AJ, Hopkins WG, Gore CJ (2011) Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med 41(10):801–814

    Article  PubMed  Google Scholar 

  • Chase PB, Kushmerick MJ (1988) Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophys J 53:935–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng AJ, Westerblad H (2017) Mechanical isolation, and measurement of force and myoplasmic free [Ca2+] in fully intact single skeletal muscle fibers. Nat Protoc 12(9):1763–1776

    Article  CAS  PubMed  Google Scholar 

  • Cheng AJ, Bruton JD, Lanner JT, Westerblad H (2015) Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres. J Physiol 593(2):457–472

    Article  CAS  PubMed  Google Scholar 

  • Cheng AJ, Yamada T, Rassier D, Andersson DC, Westerblad H, Lanner JT (2016) Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery. J Physiol 594(18):5149–5160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng AJ, Willis SJ, Zinner C, Chaillou T, Ivarsson N, Ørtenblad N et al (2017) Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle. J Physiol 595(24):7413–7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng AJ, Place N, Westerblad H (2018) Molecular basis for exercise-induced fatigue: the importance of strictly controlled cellular Ca2+ handling. Cold Spring Harbor Perspect Med 8(2):a029710

    Article  CAS  Google Scholar 

  • Cheng AJ, Hwee DT, Kim LH, Durham N, Yang HT, Hinken AC et al (2019) Fast skeletal muscle troponin activator CK-2066260 increases fatigue resistance by reducing the energetic cost of muscle contraction. J Physiol 597(17):4615–4625

    Article  CAS  PubMed  Google Scholar 

  • Cooke R, Pate E (1985) The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J 48:789–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooke R, Franks K, Luciani GB, Pate E (1988) The inhibition of rabbit skeletal muscle contraction by hydrogen ions and phosphate. J Physiol 395:77–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coyle EF, Coggan AR, Hemmert MK, Ivy JL (1986) Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 61(1):165–172

    Article  CAS  PubMed  Google Scholar 

  • Dahlstedt AJ, Katz A, Wieringa B, Westerblad H (2000) Is creatine kinase responsible for fatigue? Studies of skeletal muscle deficient of creatine kinase. FASEB J 14:982–990

    Article  CAS  PubMed  Google Scholar 

  • Dahlstedt AJ, Katz A, Tavi P, Westerblad H (2003) Creatine kinase injection restores contractile function in creatine-kinase-deficient mouse skeletal muscle fibres. J Physiol 547(2):395–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debold EP, Romatowski J, Fitts RH (2006) The depressive effect of Pi on the force-pCa relationship in skinned single muscle fibers is temperature dependent. Am J Physiol Cell Physiol 290(4):C1041–C1C50

    Article  CAS  PubMed  Google Scholar 

  • Debold EP, Fitts RH, Sundberg CW, Nosek TM (2016) Muscle fatigue from the perspective of a single crossbridge. Med Sci Sports Exerc 48(11):2270–2280

    Article  CAS  PubMed  Google Scholar 

  • Duke AM, Steele DS (2001) Mechanisms of reduced SR Ca2+ release induced by inorganic phosphate in rat skeletal muscle fibers. Am J Physiol Cell Physiol 281(2):C418–CC29

    Article  CAS  PubMed  Google Scholar 

  • Dulhunty AF (2006) Excitation-contraction coupling from the 1950s into the new millennium. Clin Exp Pharmacol Physiol 33(9):763–772

    Article  CAS  PubMed  Google Scholar 

  • Dutka TL, Cole L, Lamb GD (2005) Calcium-phosphate precipitation in the sarcoplasmic reticulum reduces action potential-mediated Ca2+ release in mammalian skeletal muscle. Am J Physiol Cell Physiol 289:C1502–C1C12

    Article  CAS  PubMed  Google Scholar 

  • Fabiato A, Fabiato F (1978) Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol 276(1):233–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson RA (2010) Limitations to performance during alpine skiing. Exp Physiol 95(3):404–410

    Article  PubMed  Google Scholar 

  • Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB (2018) Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 118(4):691–728

    Article  CAS  PubMed  Google Scholar 

  • Ferreira JJ, Pequera G, Launikonis BS, Rios E, Brum G (2021) A chloride channel blocker prevents the suppression by inorganic phosphate of the cytosolic calcium signals that control muscle contraction. J Physiol 599(1):157–170

    Article  CAS  PubMed  Google Scholar 

  • Fitts RH (2016) The role of acidosis in fatigue: pro perspective. Med Sci Sports Exerc 48:2335–2338

    Article  PubMed  Google Scholar 

  • Fryer MW, Owen VJ, Lamb GD, Stephenson DG (1995) Effects of creatine phosphate and Pi on Ca2+ movements and tension development in rat skinned skeletal muscle fibres. J Physiol 482(1):123–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81(4):1725–1789

    Article  CAS  PubMed  Google Scholar 

  • Godt RE, Nosek TM (1989) Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. J Physiol 412:155–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Cabrera MC, Domenech E, Romagnoli M, Arduini A, Borras C, Pallardo FV et al (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87(1):142–149

    Article  CAS  PubMed  Google Scholar 

  • Hadzic M, Eckstein ML, Schugardt M (2019) The impact of sodium bicarbonate on performance in response to exercise duration in athletes: a systematic review. J Sports Sci Med 18(2):271–281

    PubMed  PubMed Central  Google Scholar 

  • Haider G, Folland JP (2014) Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med Sci Sports Exerc 46(12):2234–2243

    Article  CAS  PubMed  Google Scholar 

  • Henneman E, Olson CB (1965) Relations between structure and function in the design of skeletal muscles. J Neurophysiol 28:581–598

    Article  CAS  PubMed  Google Scholar 

  • Hermansen L, Hultman E, Saltin B (1967) Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71(2):129–139

    Article  CAS  PubMed  Google Scholar 

  • Hintermeister RA, O'Connor DD, Lange GW, Dillman CJ, Steadman JR (1997) Muscle activity in wedge, parallel, and giant slalom skiing. Med Sci Sports Exerc 29(4):548–553

    Article  CAS  PubMed  Google Scholar 

  • Hogan MC, Richardson RS, Haseler LJ (1999) Human muscle performance and PCr hydrolysis with varied inspired oxygen fractions: a 31P-MRS study. J Appl Physiol 86(4):1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Homsher E (1987) Muscle enthalpy production and its relationship to actomyosin ATPase. Annu Rev Physiol 49:673–690

    Article  CAS  PubMed  Google Scholar 

  • Hord NG, Tang Y, Bryan NS (2009) Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am J Clin Nutr 90(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Ivarsson N, Schiffer TA, Hernandez A, Lanner JT, Weitzberg E, Lundberg JO et al (2017) Dietary nitrate markedly improves voluntary running in mice. Physiol Behav 168:55–61

    Article  CAS  PubMed  Google Scholar 

  • Ivarsson N, Mattsson CM, Cheng AJ, Bruton JD, Ekblom B, Lanner JT et al (2019) SR Ca2+ leak in skeletal muscle fibers acts as an intracellular signal to increase fatigue resistance. J Gen Physiol 151(4):567–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen R, Ørtenblad N, Stausholm MH, Skjaerbaek MC, Larsen DN, Hansen M et al (2020) Heterogeneity in subcellular muscle glycogen utilisation during exercise impacts endurance capacity in men. J Physiol 598(19):4271–4292

    Article  CAS  PubMed  Google Scholar 

  • Johansen L, Quistorff B (2003) 31P-MRS characterization of sprint and endurance trained athletes. Int J Sports Med 24(3):183–189

    Google Scholar 

  • Jones AM, Thompson C, Wylie LJ, Vanhatalo A (2018) Dietary nitrate and physical performance. Annu Rev Nutr 38:303–328

    Article  CAS  PubMed  Google Scholar 

  • Jones AM, Vanhatalo A, Seals DR, Rossman MJ, Piknova B, Jonvik KL (2021) Dietary nitrate and nitric oxide metabolism: mouth, circulation, skeletal muscle, and exercise performance. Med Sci Sports Exerc 53(2):280–294

    Article  CAS  PubMed  Google Scholar 

  • Jubeau M, Fur YLE, Duhamel G, Wegrzyk J, Confort-Gouny S, Vilmen C et al (2015) Localized metabolic and t2 changes induced by voluntary and evoked contractions. Med Sci Sports Exerc 47(5):921–930

    Article  CAS  PubMed  Google Scholar 

  • Juel C (1997) Lactate-proton cotransport in skeletal muscle. Physiol Rev 77(2):321–358

    Article  CAS  PubMed  Google Scholar 

  • Kabbara AA, Allen DG (1999) The role of calcium stores in fatigue of isolated single muscle fibres from the cane toad. J Physiol 519:169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabbara AA, Allen DG (2001) The use of fluo-5N to measure sarcoplasmic reticulum calcium in single muscle fibres of the cane toad. J Physiol 534:87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karatzaferi C, de Haan A, Ferguson RA, van Mechelen W, Sargeant AJ (2001) Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflügers Arch. 442(3):467–474

    Article  CAS  PubMed  Google Scholar 

  • Kluger BM, Krupp LB, Enoka RM (2013) Fatigue and fatigability in neurologic illnesses: proposal for a unified taxonomy. Neurology 80(4):409–416

    Article  PubMed  PubMed Central  Google Scholar 

  • Krustrup P, Söderlund K, Relu MU, Ferguson RA, Bangsbo J (2009) Heterogeneous recruitment of quadriceps muscle portions and fibre types during moderate intensity knee-extensor exercise: effect of thigh occlusion. Scand J Med Sci Sports 19(4):576–584

    Article  CAS  PubMed  Google Scholar 

  • Lamb GD, Stephenson DG (1994) Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 478:331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb GD, Recupero E, Stephenson DG (1992) Effect of myoplasmic pH on excitation-contraction coupling in skeletal muscle fibres of the toad. J Physiol 448:211–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B (2007) Effects of dietary nitrate on oxygen cost during exercise. Acta Physiol (Oxf) 191(1):59–66

    Article  CAS  Google Scholar 

  • Larsen FJ, Weitzberg E, Lundberg JO, Ekblom B (2010) Dietary nitrate reduces maximal oxygen consumption while maintaining work performance in maximal exercise. Free Radic Biol Med 48(2):342–347

    Article  CAS  PubMed  Google Scholar 

  • Laver DR, Eager KR, Taoube L, Lamb GD (2000) Effects of cytoplasmic and luminal pH on Ca2+ release channels from rabbit skeletal muscle. Biophys J 78(4):1835–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Gu Y, Yu X (2017) Assessing tissue metabolism by phosphorous-31 magnetic resonance spectroscopy and imaging: a methodology review. Quant Imaging Med Surg 7(6):707–726

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundberg JO, Carlström M, Weitzberg E (2018) Metabolic effects of dietary nitrate in health and disease. Cell Metab 28(1):9–22

    Article  CAS  PubMed  Google Scholar 

  • Lunde PK, Dahlstedt AJ, Bruton JD, Lännergren J, Thorén P, Sejersted OM et al (2001) Contraction and intracellular Ca2+ handling in isolated skeletal muscle of rats with congestive heart failure. Circ Res 88:1299–1305

    Article  CAS  PubMed  Google Scholar 

  • Lunde PK, Sejersted OM, Thorud HM, Tonnessen T, Henriksen UL, Christensen G et al (2006) Effects of congestive heart failure on Ca2+ handling in skeletal muscle during fatigue. Circ Res 98(12):1514–1519

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Fill M, Knudson CM, Campbell KP, Coronado R (1988) Ryanodine receptor of skeletal muscle is a gap junction-type channel. Science 242(4875):99–102

    Article  CAS  PubMed  Google Scholar 

  • Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer J, Potvin J et al (2002) Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol 93(5):1598–1607

    Article  CAS  PubMed  Google Scholar 

  • Marchand I, Tarnopolsky M, Adamo KB, Bourgeois JM, Chorneyko K, Graham TE (2007) Quantitative assessment of human muscle glycogen granules size and number in subcellular locations during recovery from prolonged exercise. J Physiol 580(2):617–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matuszczak Y, Farid M, Jones J, Lansdowne S, Smith MA, Taylor AA et al (2005) Effects of N-acetylcysteine on glutathione oxidation and fatigue during handgrip exercise. Muscle Nerve 32(5):633–638

    Article  CAS  PubMed  Google Scholar 

  • McCarthy DG, Spriet LL (2020) Performance effects of carbohydrate ingestion between bouts of intense aerobic interval exercise. Int J Sports Physiol Perform 15(2):262–267

    Article  PubMed  Google Scholar 

  • McKenna MJ, Medved I, Goodman CA, Brown MJ, Bjorksten AR, Murphy KT et al (2006) N- acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans. J Physiol 576(Pt 1):279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medbø JI, Tabata I (1989) Relative importance of aerobic and anaerobic energy release during short-lasting exhausting bicycle exercise. J Appl Physiol 67(5):1881–1886

    Article  PubMed  Google Scholar 

  • Medved I, Brown MJ, Bjorksten AR, Murphy KT, Petersen AC, Sostaric S et al (2004) N-acetylcysteine enhances muscle cysteine and glutathione availability and attenuates fatigue during prolonged exercise in endurance-trained individuals. J Appl Physiol 97(4):1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Meissner G, Darling E, Eveleth J (1986) Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry (Mosc) 25(1):236–244

    Article  CAS  Google Scholar 

  • Metzger JM (1996) Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers. Biophys J 70(1):409–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzger JM, Moss RL (1987) Greater hydrogen ion-induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles. J Physiol 393:727–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelson LP, Shi G, Ward CW, Rodney GG (2010) Mitochondrial redox potential during contraction in single intact muscle fibers. Muscle Nerve 42:522–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller RG, Boska MD, Moussavi RS, Carson PJ, Weiner MW (1988) 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue. Comparison of aerobic and anaerobic exercise. J Clin Invest 81(4):1190–1196

    Google Scholar 

  • Newham DJ, Cady EB (1990) A 31P study of fatigue and metabolism in human skeletal muscle with voluntary, intermittent contractions at different forces. NMR Biomed 3(5):211–219

    Article  CAS  PubMed  Google Scholar 

  • Nielsen J, Schrøder HD, Rix CG, Ørtenblad N (2009) Distinct effects of subcellular glycogen localization on tetanic relaxation time and endurance in mechanically skinned rat skeletal muscle fibres. J Physiol 587(Pt 14):3679–3690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J, Holmberg HC, Schrøder HD, Saltin B, Ørtenblad N (2011) Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol 589(11):2871–2885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J, Cheng AJ, Ørtenblad N, Westerblad H (2014) Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres. J Physiol 592:2003–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson K, Cheng AJ, Al-Ameri M, Wyckelsma VL, Rullman E, Westerblad H et al (2020) Impaired sarcoplasmic reticulum Ca2+ release is the major cause of fatigue-induced force loss in intact single fibres from human intercostal muscle. J Physiol 598(4):773–787

    Article  CAS  PubMed  Google Scholar 

  • Ørtenblad N, Nielsen J, Saltin B, Holmberg HC (2011) Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol 589(3):711–725

    Article  PubMed  CAS  Google Scholar 

  • Ørtenblad N, Westerblad H, Nielsen J (2013) Muscle glycogen stores and fatigue. J Physiol 591(18):4405–4413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal R, Basu Thakur P, Li S, Minard C, Rodney GG (2013) Real-time imaging of NADPH oxidase activity in living cells using a novel fluorescent protein reporter. PLoS One 8(5):e63989

    Article  PubMed  PubMed Central  Google Scholar 

  • Pate E, Bhimani M, Franks-Skiba K, Cooke R (1995) Reduced effect of pH on skinned rabbit psoas muscle mechanics at high temperatures: implications for fatigue. J Physiol 486(3):689–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulsen G, Cumming KT, Holden G, Hallen J, Ronnestad BR, Sveen O et al (2014) Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: a double-blind, randomised, controlled trial. J Physiol 592(8):1887–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson SJ, Hussain SR (2015) A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med 45(2):187–200

    Article  PubMed  Google Scholar 

  • Periasamy M, Kalyanasundaram A (2007) SERCA pump isoforms: their role in calcium transport and disease. Muscle Nerve 35(4):430–442

    Article  CAS  PubMed  Google Scholar 

  • Place N, Yamada T, Zhang SJ, Westerblad H, Bruton JD (2009) High temperature does not alter fatigability in intact mouse skeletal muscle fibres. J Physiol 587(Pt 19):4717–4724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers SK, Jackson MJ (2008) Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 88(4):1243–1276

    Article  CAS  PubMed  Google Scholar 

  • Pye D, Palomero J, Kabayo T, Jackson MJ (2007) Real-time measurement of nitric oxide in single mature mouse skeletal muscle fibres during contractions. J Physiol 581(1):309–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid MB, Stokic DS, Koch SM, Khawli FA, Leis AA (1994) N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest 94(6):2468–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106(21):8665–8670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahlin K, Harris RC, Nylind B, Hultman E (1976) Lactate content and pH in muscle obtained after dynamic exercise. Pflügers Arch 367(2):143–149

    Article  CAS  PubMed  Google Scholar 

  • Sahlin K, Tonkonogi M, Söderlund K (1998) Energy supply and muscle fatigue in humans. Acta Physiol Scand 162:261–266

    Article  CAS  PubMed  Google Scholar 

  • Sakellariou GK, Vasilaki A, Palomero J, Kayani A, Zibrik L, McArdle A et al (2013) Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal 18(6):603–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders B, de Oliveira LF, Dolan E, Durkalec-Michalski K, McNaughton L, Artioli GG et al (2021) Sodium bicarbonate supplementation and the female athlete: a brief commentary with small scale systematic review and meta-analysis. Eur J Sport Sci 22(5):745–754

    Article  PubMed  Google Scholar 

  • Siegler JC, Mudie K, Marshall P (2016) The influence of sodium bicarbonate on maximal force and rates of force development in the triceps surae and brachii during fatiguing exercise. Exp Physiol 101(11):1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Skurvydas A, Mamkus G, Kamandulis S, Dudoniene V, Valanciene D, Westerblad H (2016) Mechanisms of force depression caused by different types of physical exercise studied by direct electrical stimulation of human quadriceps muscle. Eur J Appl Physiol 116:2251–2224

    Article  Google Scholar 

  • Slattery KM, Dascombe B, Wallace LK, Bentley DJ, Coutts AJ (2014) Effect of N-acetylcysteine on cycling performance after intensified training. Med Sci Sports Exerc 46(6):1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Spangenburg EE, Booth FW (2003) Molecular regulation of individual skeletal muscle fibre types. Acta Physiol Scand 178(4):413–424

    Article  CAS  PubMed  Google Scholar 

  • Spriet LL (1992) Anaerobic metabolism in human skeletal muscle during short-term, intense activity. Can J Physiol Pharmacol 70(1):157–165

    Article  CAS  PubMed  Google Scholar 

  • Spriet LL, Lindinger MI, McKelvie RS, Heigenhauser GJ, Jones NL (1989) Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. J Appl Physiol 66(1):8–13

    Article  CAS  PubMed  Google Scholar 

  • Steele DS, Duke AM (2003) Metabolic factors contributing to altered Ca2+ regulation in skeletal muscle fatigue. Acta Physiol Scand 179(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Stephenson DG, Lamb GD, Stephenson GM (1998) Events of the excitation-contraction-relaxation (E-C-R) cycle in fast- and slow-twitch mammalian muscle fibres relevant to muscle fatigue. Acta Physiol Scand 162(3):229–245

    Article  CAS  PubMed  Google Scholar 

  • Strobel NA, Peake JM, Matsumoto A, Marsh SA, Coombes JS, Wadley GD (2011) Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Med Sci Sports Exerc 43(6):1017–1024

    Article  CAS  PubMed  Google Scholar 

  • Sugaya M, Yasuda T, Suga T, Okita K, Abe T (2011) Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise. Clin Physiol Funct Imaging 31(5):411–413

    Article  PubMed  Google Scholar 

  • Sundberg CW, Prost RW, Fitts RH, Hunter SK (2019) Bioenergetic basis for the increased fatigability with ageing. J Physiol 597(19):4943–4957

    Article  CAS  PubMed  Google Scholar 

  • Szentesi P, Zaremba R, van Mechelen W, Stienen GJ (2001) ATP utilization for calcium uptake and force production in different types of human skeletal muscle fibres. J Physiol 531(2):393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL (2016) Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc 48(11):2294–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DJ, Styles P, Matthews PM, Arnold DA, Gadian DG, Bore P et al (1986) Energetics of human muscle: exercise-induced ATP depletion. Magn Reson Med 3(1):44–54

    Article  CAS  PubMed  Google Scholar 

  • Tesch PA (1983) Physiological characteristics of elite kayak paddlers. Can J Appl Sport Sci 8(2):87–91

    CAS  PubMed  Google Scholar 

  • Tesch PA, Karlsson J (1984) Muscle metabolite accumulation following maximal exercise. A comparison between short-term and prolonged kayak performance. Eur J Appl Physiol Occup Physiol 52(2):243–246

    Article  CAS  PubMed  Google Scholar 

  • Tiller NB, Elliott-Sale KJ, Knechtle B, Wilson PB, Roberts JD, Millet GY (2021) Do sex differences in physiology confer a female advantage in ultra-endurance sport? Sports Med 51(5):895–915

    Article  PubMed  Google Scholar 

  • Vandenbogaerde TJ, Hopkins WG (2011) Effects of acute carbohydrate supplementation on endurance performance: a meta-analysis. Sports Med 41(9):773–792

    Article  PubMed  Google Scholar 

  • Vanderthommen M, Gilles R, Carlier P, Ciancabilla F, Zahlan O, Sluse F et al (1999) Human muscle energetics during voluntary and electrically induced isometric contractions as measured by 31P NMR spectroscopy. Int J Sports Med 20(5):279–283

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Salahura G, Boncompagni S, Kasischke KA, Protasi F, Sheu SS et al (2011) Mitochondrial superoxide flashes: metabolic biomarkers of skeletal muscle activity and disease. FASEB J 25(9):3068–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerblad H (2016) Acidosis is not a significant cause of skeletal muscle fatigue. Med Sci Sports Exerc 48:2339–2342

    Article  PubMed  Google Scholar 

  • Westerblad H, Allen DG (1991) Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J Gen Physiol 98(3):615–635

    Article  CAS  PubMed  Google Scholar 

  • Westerblad H, Allen DG (1992) Myoplasmic free Mg2+ concentration during repetitive stimulation of single fibres from mouse skeletal muscle. J Physiol 453:413–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerblad H, Allen DG (1993) The influence of intracellular pH on contraction, relaxation and [Ca2+]i in intact single fibres from mouse muscle. J Physiol 466(1):611–628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westerblad H, Allen DG (1996) The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of mouse skeletal muscle. Pflügers Arch. 431(6):964–970

    Article  CAS  PubMed  Google Scholar 

  • Wiseman RW, Beck TW, Chase PB (1996) Effect of intracellular pH on force development depends on temperature in intact skeletal muscle from mouse. Am J Phys 271(3):C878–CC86

    Article  CAS  Google Scholar 

  • Westerblad H, Bruton JD, Lännergren J (1997) The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. J Physiol 500(1):193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerblad H, Dahlstedt AJ, Lännergren J (1998) Mechanisms underlying reduced maximum shortening velocity during fatigue of intact, single fibres of mouse muscle. J Physiol 510(1):269–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield J, Gamu D, Heigenhauser GJF, VAN Loon LJC, Spriet LL, Tupling AR et al (2017) Beetroot juice increases human muscle force without changing Ca2+-handling proteins. Med Sci Sports Exerc 49(10):2016–2024

    Article  PubMed  Google Scholar 

  • Wright DC, Geiger PC, Han DH, Jones TE, Holloszy JO (2007) Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem 282(26):18793–18799

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Steinz MM, Kenne E, Lanner JT (2017) Muscle weakness in reumatoid arthritis: the role of Ca2+ and free radical signaling. EBioMedicine 23:12–19

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang SJ, Andersson DC, Sandström ME, Westerblad H, Katz A (2006a) Cross-bridges account for only 20% of total ATP consumption during submaximal isometric contraction in mouse fast-twitch skeletal muscle. Am J Physiol Cell Physiol 291:C147–CC54

    Article  CAS  PubMed  Google Scholar 

  • Zhang SJ, Bruton JD, Katz A, Westerblad H (2006b) Limited oxygen diffusion accelerates fatigue development in mouse skeletal muscle. J Physiol 572(2):551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SJ, Sandström ME, Aydin J, Westerblad H, Wieringa B, Katz A (2008) Activation of glucose transport and AMP-activated protein kinase during muscle contraction in adenylate kinase-1 knockout mice. Acta Physiol (Oxf) 192(3):413–420

    Article  CAS  Google Scholar 

  • Zanou N, Dridi H, Reiken S, Imamura de Lima T, Donnelly C, De Marchi U, Ferrini M, Vidal J, Sittenfeld L, Feige JN, Garcia-Roves PM, Lopez-Mejia IC, Marks AR, Auwerx J, Kayser B, Place N (2021) Acute RyR1 Ca2+ leak enhances NADH-linked mitochondrial respiratory capacity. Nat Commun 12(1):7219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Chris Donnelly for assistance in summarizing Fig. 17.3. The work was supported by grants from the Swedish Research Council, the Swedish Research Council for Sport Science and the Swiss Sports Medicine Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HÃ¥kan Westerblad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Place, N., Westerblad, H. (2022). Metabolic Factors in Skeletal Muscle Fatigue. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_17

Download citation

Publish with us

Policies and ethics