Skip to main content

Sex-Specific Effects on Exercise Metabolism

  • Chapter
  • First Online:
Exercise Metabolism

Abstract

Women and men exhibit different anthropometric and physiologic characteristics, along with a sex-specific morphologic and metabolic imprint of skeletal muscle. These sex differences integrate to impact on metabolism during exercise. Men have a greater maximal exercise capacity than equally trained women. Besides this, a remarkable sex difference is a greater fatty acid oxidation in women than men at the same relative exercise intensity. The greater fatty acid oxidation may lead to less amino acid oxidation during exercise and potentially muscle glycogen sparing in women compared with men. Several sex-specific morphologic and molecular features of skeletal muscle appear to explain the differences in substrate utilization during exercise in women and men. Here, factors such as muscle fiber type composition, capillarization, and substrate availability within skeletal muscle will be discussed in a sex-comparative manner. The influence of sex on mitochondria—specifically, the energy generating pathways as beta-oxidation and glycolysis, the tricarboxylic acid cycle (TCA) cycle, and electron transport chain capacities—will also be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Areta JL, Burke LM, Camera DM, West DWD, Crawshay S, Moore DR, Stellingwerff T, Phillips SM, Hawley JA, Coffey VG (2014) Reduced resting skeletal muscle protein synthesis is rescued by resistance exercise and protein ingestion following short-term energy deficit. Am J Physiol-Endocrinol Metabolism 306(8):E989–E997

    Article  CAS  Google Scholar 

  • Beltrame T, Villar R, Hughson RL (2017) Sex differences in the oxygen delivery, extraction, and uptake during moderate-walking exercise transition. Appl Physiol Nutr Metab 42(9):994–1000

    Article  CAS  PubMed  Google Scholar 

  • Berthon PM, Howlett RA, Heigenhauser GJF, Spriet LL (1998) Human skeletal muscle carnitine palmitoyltransferase I activity determined in isolated intact mitochondria. J Appl Physiol 85(1):148–153

    Article  CAS  PubMed  Google Scholar 

  • Borges O, Essén-gustavsson B (1989) Enzyme activities in type I and II muscle fibres of human skeletal muscle in relation to age and torque development. Acta Physiol Scand 136(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Burguera B, Proctor D, Dietz N, Guo Z, Joyner M, Jensen MD (2000) Leg free fatty acid kinetics during exercise in men and women. Am J Physiol-Endocrinol Metab 278(1):E113–E117

    Article  CAS  PubMed  Google Scholar 

  • Carter SL, Rennie CD, Hamilton SJ, Tarnopolsky MA (2001a) Changes in skeletal muscle in males and females following endurance training. Can J Physiol Pharmacol 79(5):386–392

    Article  CAS  PubMed  Google Scholar 

  • Carter SL, Rennie C, Tarnopolsky MA (2001b) Substrate utilization during endurance exercise in men and women after endurance training. Am J Physiol-Endocrinol Metab 280(6):E898–E907

    Article  CAS  PubMed  Google Scholar 

  • Chapman MA, Arif M, Emanuelsson EB, Reitzner SM, Lindholm ME, Mardinoglu A, Sundberg CJ (2020) Skeletal muscle transcriptomic comparison between long-term trained and untrained men and women. Cell Rep 31(12):107808

    Article  CAS  PubMed  Google Scholar 

  • Charkoudian N, Joyner MJ (2004) Physiologic considerations for exercise performance in women. Clin Chest Med 25(2):247–255

    Article  PubMed  Google Scholar 

  • Chumlea W, Guo S, Kuczmarski R, Flegal K, Johnson C, Heymsfield S, Lukaski H, Friedl K, Hubbard V (2002) Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes 26(12):1596–1609

    Article  CAS  Google Scholar 

  • Costill DL, Fink WJ, Getchell LH, Ivy JL, Witzmann FA (1979) Lipid metabolism in skeletal muscle of endurance-trained males and females. J Appl Physiol 47(4):787–791

    Article  CAS  PubMed  Google Scholar 

  • Covington JD, Galgani JE, Moro C, LaGrange JM, Zhang Z, Rustan AC, Ravussin E, Bajpeyi S (2014) Skeletal muscle Perilipin 3 and Coatomer proteins are increased following exercise and are associated with fat oxidation. PLoS One 9(3):e91675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crane JD, Devries MC, Safdar A, Hamadeh MJ, Tarnopolsky MA (2010) The effect of aging on human skeletal muscle mitochondrial and Intramyocellular lipid ultrastructure. J Gerontol Ser A Biol Med Sci 65A(2):119–128

    Article  Google Scholar 

  • Davis SN, Galassetti P, Wasserman DH, Tate D (2000) Effects of gender on neuroendocrine and metabolic Counterregulatory responses to exercise in Normal man. J Clin Endocrinol Metabol 85(1):224–230

    CAS  Google Scholar 

  • Devries MC, Lowther SA, Glover AW, Hamadeh MJ, Tarnopolsky MA (2007) IMCL area density, but not IMCL utilization, is higher in women during moderate-intensity endurance exercise, compared with men. Am J Physiol-Regul Integr Com Physiol 293(6):R2336–R2342

    Article  CAS  Google Scholar 

  • Dreyer HC, Fujita S, Glynn EL, Drummond MJ, Volpi E, Rasmussen BB (2010) Resistance exercise increases leg muscle protein synthesis and mTOR signalling independent of sex. Acta Physiol 199(1):71–81

    Article  CAS  Google Scholar 

  • Esbjörnsson M, Sylvén C, Holm I, Jansson E (1993) Fast twitch Fibres may predict anaerobic performance in both females and males. Int J Sports Med 14(05):257–263

    Article  PubMed  Google Scholar 

  • Esbjörnsson-Liljedahl M, Sundberg CJ, Norman B, Jansson E (1999) Metabolic response in type I and type II muscle fibers during a 30-s cycle sprint in men and women. J Appl Physiol 87(4):1326–1332

    Article  PubMed  Google Scholar 

  • Esbjörnsson-Liljedahl M, Bodin K, Jansson E (2002) Smaller muscle ATP reduction in women than in men by repeated bouts of sprint exercise. J Appl Physiol 93(3):1075–1083

    Article  PubMed  Google Scholar 

  • Essén B, Jansson E, Henriksson J, Taylor AW, Saltin B (1975) Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol Scand 95(2):153–165

    Article  PubMed  Google Scholar 

  • Friedlander AL, Casazza GA, Horning MA, Huie MJ, Piacentini MF, Trimmer JK, Brooks GA (1998) Training-induced alterations of carbohydrate metabolism in women: women respond differently from men. J Appl Physiol 85(3):1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Fu MH, Maher AC, Hamadeh MJ, Ye C, Tarnopolsky MA (2009) Exercise, sex, menstrual cycle phase, and 17β-estradiol influence metabolism-related genes in human skeletal muscle. Physiol Genomics 40(1):34–47

    Article  CAS  PubMed  Google Scholar 

  • Fujita S, Rasmussen BB, Bell JA, Cadenas JG, Volpi E (2007) Basal muscle intracellular amino acid kinetics in women and men. Am J Physiol-Endocrinol Metab 292(1):E77–E83

    Article  CAS  PubMed  Google Scholar 

  • Granneman JG, Moore H-PH, Mottillo EP, Zhu Z, Zhou L (2011) Interactions of Perilipin-5 (Plin5) with adipose triglyceride lipase. J Biol Chem 286(7):5126–5135

    Article  CAS  PubMed  Google Scholar 

  • Green HJ, Fraser IG, Ranney DA (1984) Male and female differences in enzyme activities of energy metabolism in vastus lateralis muscle. J Neurol Sci 65(3):323–331

    Article  CAS  PubMed  Google Scholar 

  • Haugaard SB, Mu H, Vaag A, Madsbad S (2009) Intramyocellular triglyceride content in man, influence of sex, obesity and glycaemic control. Eur J Endocrinol 161(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Hill DW, Smith JC (1993) Gender difference in anaerobic capacity: role of aerobic contribution. Br J Sports Med 27(1):45–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Høeg L, Roepstorff C, Thiele M, Richter EA, Wojtaszewski JFP, Kiens B (2009) Higher intramuscular triacylglycerol in women does not impair insulin sensitivity and proximal insulin signaling. J Appl Physiol 107(3):824–831

    Article  PubMed  CAS  Google Scholar 

  • Høeg LD, Sjøberg KA, Jeppesen J, Jensen TE, Frøsig C, Birk JB, Bisiani B, Hiscock N, Pilegaard H, Wojtaszewski JFP, Richter EA, Kiens B (2011) Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling. Diabetes 60(1):64–73

    Article  PubMed  CAS  Google Scholar 

  • Hoppeler H, Howald H, Conley K, Lindstedt SL, Claassen H, Vock P, Weibel ER (1985) Endurance training in humans: aerobic capacity and structure of skeletal muscle. J Appl Physiol 59(2):320–327

    Article  CAS  PubMed  Google Scholar 

  • Horton TJ, Pagliassotti MJ, Hobbs K, Hill JO (1998) Fuel metabolism in men and women during and after long-duration exercise. J Appl Physiol 85(5):1823–1832

    Article  CAS  PubMed  Google Scholar 

  • Horwath O, Moberg M, Larsen FJ, Philp A, Apró W, Ekblom B (2020) Influence of sex and fiber type on the satellite cell pool in human skeletal muscle. Scand J Med Sci Sports 31(2):303–312

    Article  PubMed  Google Scholar 

  • Jacobs RA, Lundby C (2013) Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. J Appl Physiol 114(3):344–350

    Article  CAS  PubMed  Google Scholar 

  • Jacobs I, Tesch PA, Bar-Or O, Karlsson J, Dotan R (1983) Lactate in human skeletal muscle after 10 and 30 s of supramaximal exercise. J Appl Physiol 55(2):365–367

    Article  CAS  PubMed  Google Scholar 

  • Janssen I, Heymsfield SB, Wang Z, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J Appl Physiol 89(1):81–88

    Article  CAS  PubMed  Google Scholar 

  • Jaworowski Å, Porter MM, Holmbäck AM, Downham D, Lexell J (2002) Enzyme activities in the tibialis anterior muscle of young moderately active men and women: relationship with body composition, muscle cross-sectional area and fibre type composition. Acta Physiol Scand 176(3):215–225

    Article  CAS  PubMed  Google Scholar 

  • Jeon Y, Choi J, Kim HJ, Lee H, Lim J-Y, Choi S-J (2019) Sex- and fiber-type-related contractile properties in human single muscle fiber. Journal of exercise. Rehabilitation 15(4):537–545

    Google Scholar 

  • Joyner MJ, Casey DP (2015) Regulation of increased blood flow (hyperemia) to muscles during exercise: A hierarchy of competing physiological needs. Physiol Rev 95(2):549–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karakelides H, Irving BA, Short KR, O’Brien P, Nair KS (2010) Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes 59(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Karpe F, Dickmann JR, Frayn KN (2011) Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60(10):2441–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiens B, Roepstorff C, Glatz JFC, Bonen A, Schjerling P, Knudsen J, Nielsen JN (2004) Lipid-binding proteins and lipoprotein lipase activity in human skeletal muscle: influence of physical activity and gender. J Appl Physiol 97(4):1209–1218

    Article  CAS  PubMed  Google Scholar 

  • Koutsari C, Basu R, Rizza RA, Nair KS, Khosla S, Jensen MD (2011) Nonoxidative free fatty acid disposal is greater in young women than men. J Clin Endocrinol Metabol 96(2):541–547

    Article  CAS  Google Scholar 

  • Krumsiek J, Mittelstrass K, Do KT, Stückler F, Ried J, Adamski J, Peters A, Illig T, Kronenberg F, Friedrich N, Nauck M, Pietzner M, Mook-Kanamori DO, Suhre K, Gieger C, Grallert H, Theis FJ, Kastenmüller G (2015) Gender-specific pathway differences in the human serum metabolome. Metabolomics 11(6):1815–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvist H, Chowdhury B, Grangård U, Tylén U, Sjöström L (1988) Total and visceral adipose-tissue volumes derived from measurements with computed tomography in adult men and women: predictive equations. Am J Clin Nutr 48(6):1351–1361

    Article  CAS  PubMed  Google Scholar 

  • Lamont LS, McCullough AJ, Kalhan SC (2001) Gender differences in leucine, but not lysine, kinetics. J Appl Physiol 91(1):357–362

    Article  CAS  PubMed  Google Scholar 

  • Lemieux S, Prud’homme D, Bouchard C, Tremblay A, Després JP (1993) Sex differences in the relation of visceral adipose tissue accumulation to total body fatness. Am J Clin Nutr 58(4):463–467

    Article  CAS  PubMed  Google Scholar 

  • Lindholm ME, Huss M, Solnestam BW, Kjellqvist S, Lundeberg J, Sundberg CJ (2014) The human skeletal muscle transcriptome: sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing. FASEB J 28(10):4571–4581

    Article  CAS  PubMed  Google Scholar 

  • Loe H, Rognmo Ø, Saltin B, Wisløff U (2013) Aerobic capacity reference data in 3816 healthy men and women 20–90 years. PLoS One 8(5):e64319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maher AC, Fu MH, Isfort RJ, Varbanov AR, Qu XA, Tarnopolsky MA (2009) Sex differences in global mRNA content of human skeletal muscle. PLoS One 4(7):e6335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maher AC, Akhtar M, Vockley J, Tarnopolsky MA (2010) Women have higher protein content of β-oxidation enzymes in skeletal muscle than men. PLoS One 5(8):e12025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markofski MM, Volpi E (2011) Protein metabolism in women and men: similarities and disparities. Curr Opin Clin Nutr Metab Care 14(1):93–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marliss EB, Kreisman SH, Manzon A, Halter JB, Vranic M, Nessim SJ (2000) Gender differences in glucoregulatory responses to intense exercise. J Appl Physiol 88(2):457–466

    Article  CAS  PubMed  Google Scholar 

  • Martin-Rincon M, Gelabert-Rebato M, Perez-Valera M, Galvan-Alvarez V, Morales-Alamo D, Dorado C, Boushel R, Hallen J, Calbet JAL (2021) Functional reserve and sex differences during exercise to exhaustion revealed by post-exercise ischaemia and repeated supramaximal exercise. J Physiol 599(16):3853–3878

    Article  CAS  PubMed  Google Scholar 

  • McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA (2000) Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol-Endocrinol Metabolism 278(4):E580–E587

    Article  CAS  Google Scholar 

  • Mercer D, Convit L, Condo D, Carr AJ, Hamilton DL, Slater G, Snipe RMJ (2020) Protein requirements of pre-menopausal female athletes: systematic literature review. Nutrients 12(11):3527

    Article  CAS  PubMed Central  Google Scholar 

  • Miller AEJ, MacDougall JD, Tarnopolsky MA, Sale DG (1993) Gender differences in strength and muscle fiber characteristics. Eur J Appl Physiol Occup Physiol 66(3):254–262

    Article  CAS  PubMed  Google Scholar 

  • Miotto PM, McGlory C, Holloway TM, Phillips SM, Holloway GP (2018) Sex differences in mitochondrial respiratory function in human skeletal muscle. Am J Physiol-Regul Integr Comp Physiol 314(6):R909–R915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittendorfer B, Horowitz JF, Klein S (2002) Effect of gender on lipid kinetics during endurance exercise of moderate intensity in untrained subjects. Am J Physiol-Endocrinol Metabolism 283(1):E58–E65

    Article  CAS  Google Scholar 

  • Mittendorfer B, Magkos F, Fabbrini E, Mohammed BS, Klein S (2009) Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity 17(10):1872–1877

    Article  CAS  PubMed  Google Scholar 

  • Montero D, Madsen K, Meinild-Lundby A-K, Edin F, Lundby C (2018) Sexual dimorphism of substrate utilization: differences in skeletal muscle mitochondrial volume density and function. Exp Physiol 103(6):851–859

    Article  CAS  PubMed  Google Scholar 

  • Moro C, Galgani JE, Luu L, Pasarica M, Mairal A, Bajpeyi S, Schmitz G, Langin D, Liebisch G, Smith SR (2009) Influence of gender, obesity, and muscle lipase activity on Intramyocellular lipids in sedentary individuals. J Clin Endocrinol Metabol 94(9):3440–3447

    Article  CAS  Google Scholar 

  • Murphy WG (2014) The sex difference in haemoglobin levels in adults — mechanisms, causes, and consequences. Blood Rev 28(2):41–47

    Article  CAS  PubMed  Google Scholar 

  • Perreault L, Lavely JM, Kittelson JM, Horton TJ (2004) Gender differences in lipoprotein lipase activity after acute exercise. Obes Res 12(2):241–249

    Article  CAS  PubMed  Google Scholar 

  • Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA (2012) Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl Physiol Nutr Metab 37(4):724–735

    Article  CAS  PubMed  Google Scholar 

  • Phillips SM, Atkinson SA, Tarnopolsky MA, MacDougall JD (1993) Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol 75(5):2134–2141

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff C, Steffensen CH, Madsen M, Stallknecht B, Kanstrup I-L, Richter EA, Kiens B (2002) Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects. Am J Physiol-Endocrinol Metabolism 282(2):E435–E447

    Article  CAS  Google Scholar 

  • Roepstorff C, Schjerling P, Vistisen B, Madsen M, Steffensen CH, Rider MH, Kiens B (2005) Regulation of oxidative enzyme activity and eukaryotic elongation factor 2 in human skeletal muscle: influence of gender and exercise. Acta Physiol Scand 184(3):215–224

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff C, Donsmark M, Thiele M, Vistisen B, Stewart G, Vissing K, Schjerling P, Hardie DG, Galbo H, Kiens B (2006a) Sex differences in hormone-sensitive lipase expression, activity, and phosphorylation in skeletal muscle at rest and during exercise. Am J Physiol-Endocrinol Metabolism 291(5):E1106–E1114

    Article  CAS  Google Scholar 

  • Roepstorff C, Thiele M, Hillig T, Pilegaard H, Richter EA, Wojtaszewski JFP, Kiens B (2006b) Higher skeletal muscle AMPKalpha2 activation and lower energy charge and fat oxidation in men than in women during submaximal exercise. J Physiol 574(1):125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR (2000) Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol 88(5):1707–1714

    Article  CAS  PubMed  Google Scholar 

  • Roth SM, Ferrell RE, Peters DG, Metter EJ, Hurley BF, Rogers MA (2002) Influence of age, sex, and strength training on human muscle gene expression determined by microarray. Physiol Genomics 10(3):181–190

    Article  CAS  PubMed  Google Scholar 

  • Russ DW, Lanza IR, Rothman D, Kent-Braun JA (2005) Sex differences in glycolysis during brief, intense isometric contractions. Muscle Nerve 32(5):647–655

    Article  CAS  PubMed  Google Scholar 

  • Scalzo RL, Peltonen GL, Binns SE, Shankaran M, Giordano GR, Hartley DA, Klochak AL, Lonac MC, Paris HLR, Szallar SE, Wood LM, Peelor FF, Holmes WE, Hellerstein MK, Bell C, Hamilton KL, Miller BF (2014) Greater muscle protein synthesis and mitochondrial biogenesis in males compared with females during sprint interval training. FASEB J 28(6):2705–2714

    Article  CAS  PubMed  Google Scholar 

  • Simoneau JA, Bouchard C (1989) Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol-Endocrinol Metabolism 257(4):E567–E572

    Article  CAS  Google Scholar 

  • Sims ST, Heather AK (2018) Myths and methodologies: reducing scientific design ambiguity in studies comparing sexes and/or menstrual cycle phases. Exp Physiol 103(10):1309–1317

    Article  PubMed  Google Scholar 

  • Sondergaard E, Rahbek I, Sørensen LP, Christiansen JS, Gormsen LC, Jensen MD, Nielsen S (2011) Effects of exercise on VLDL-triglyceride oxidation and turnover. Am J Physiol-Endocrinol Metabolism 300(5):E939–E944

    Article  CAS  Google Scholar 

  • Staron RS, Hagerman FC, Hikida RS, Murray TF, Hostler DP, Crill MT, Ragg KE, Toma K (2000) Fiber type composition of the vastus Lateralis muscle of young men and women. J Histochem Cytochem 48(5):623–629

    Article  CAS  PubMed  Google Scholar 

  • Steffensen CH, Roepstorff C, Madsen M, Kiens B (2002) Myocellular triacylglycerol breakdown in females but not in males during exercise. Am J Physiol-Endocrinol Metab 282(3):E634–E642

    Article  CAS  PubMed  Google Scholar 

  • Sydó N, Abdelmoneim SS, Mulvagh SL, Merkely B, Gulati M, Allison TG (2014) Relationship between exercise heart rate and age in men vs women. Mayo Clin Proc 89(12):1664–1672

    Article  PubMed  Google Scholar 

  • Tarnopolsky MA (2008) Sex differences in exercise metabolism and the role of 17-Beta estradiol. Med Sci Sports Exerc 40(4):648–654

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR (1990) Gender differences in substrate for endurance exercise. J Appl Physiol 68(1):302–308

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ (2007) Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol-Regul Integr Comp Physiol 292(3):R1271–R1278

    Article  CAS  PubMed  Google Scholar 

  • Thompson JR, Swanson SA, Casale GP, Johanning JM, Papoutsi E, Koutakis P, Miserlis D, Zhu Z, Pipinos II (2013) Gastrocnemius mitochondrial respiration: are there any differences between men and women? J Surg Res 185(1):206–211

    Article  CAS  PubMed  Google Scholar 

  • Trappe S, Gallagher P, Harber M, Carrithers J, Fluckey J, Trappe T (2003) Single muscle fibre contractile properties in young and old men and women. J Physiol 552(1):47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venables MC, Achten J, Jeukendrup AE (2005) Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study. J Appl Physiol 98(1):160–167

    Article  PubMed  Google Scholar 

  • Wang H, Sreenivasan U, Hu H, Saladino A, Polster BM, Lund LM, Gong D, Stanley WC, Sztalryd C (2011) Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J Lipid Res 52(12):2159–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welle S, Tawil R, Thornton CA (2008) Sex-related differences in gene expression in human skeletal muscle. PLoS One 3(1):e1385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • West DWD, Burd NA, Churchward-Venne TA, Camera DM, Mitchell CJ, Baker SK, Hawley JA, Coffey VG, Phillips SM (2012) Sex-based comparisons of myofibrillar protein synthesis after resistance exercise in the fed state. J Appl Physiol 112(11):1805–1813

    Article  CAS  PubMed  Google Scholar 

  • Wolfe RR, Klein S, Carraro F, Weber JM (1990) Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol Endocrinol Metabolism 258(2):E382–E389

    Article  CAS  Google Scholar 

  • Yasuda N, Glover EI, Phillips SM, Isfort RJ, Tarnopolsky MA (2005) Sex-based differences in skeletal muscle function and morphology with short-term limb immobilization. J Appl Physiol 99(3):1085–1092

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Kiens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lundsgaard, AM., Fritzen, A.M., Kiens, B. (2022). Sex-Specific Effects on Exercise Metabolism. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_15

Download citation

Publish with us

Policies and ethics