Skip to main content

Role and Regulation of Hepatic Metabolism During Exercise

  • Chapter
  • First Online:
Exercise Metabolism

Part of the book series: Physiology in Health and Disease ((PIHD))

  • 1735 Accesses

Abstract

The liver is a rechargeable battery. It releases stored energy at times of high metabolic demand such as exercise and replenishes energy stores in response to a meal. The liver is a recycler. It converts metabolites and amino acids into glucose. The liver is a detoxifier. It removes nitrogenous molecules, hemoglobin, hormones, foreign substances, immunoglobulin, and other compounds from the circulation. The muscle contracts, the adipose tissue stores fat, and the heart pumps blood. The functions of the liver are far too diverse to define by a single dominant process. The underlying role of the functions of the liver is that they make broad contributions to arterial homeostasis and thereby homeostasis of numerous cell types. Physical exercise poses a unique challenge to the liver as metabolic demands of working muscles require the liver to mobilize energy stores, recycle metabolites, and convert compounds that are toxic in excess to innocuous forms. The focus of this review will be on how the liver adapts to the metabolic demands of physical exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlborg G, Felig P (1982) Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise. J Clin Invest 69:45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahlborg G, Felig P, Hagenfeldt L et al (1974) Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest 53:1080–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnes TM, Otero YF, Elliott AD et al (2014) Interleukin-6 amplifies glucagon secretion: coordinated control via the brain and pancreas. Am J Physiol Endocrinol Metab 307:E896–E905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger CM, Sharis PJ, Bracy DP et al (1994) Sensitivity of exercise-induced increase in hepatic glucose production to glucose supply and demand. Am J Physiol Endocrinol Metab 267:E411–E421

    Article  CAS  Google Scholar 

  • Berglund ED, Lee-young RS, Lustig DG et al (2009) Hepatic energy state is regulated by glucagon receptor signaling in mice. J Cin Investig 119:2412–2422

    Article  CAS  Google Scholar 

  • Besse-Patin A, Montastier E, Vinel C et al (2014) Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int J Obes 38:707–713

    Article  CAS  Google Scholar 

  • Blackman D (1982) The economics of gluconeogenesis. Biochem Educ 10:141

    Article  Google Scholar 

  • Borengasser SJ, Rector RS, Uptergrove GM et al (2012) Exercise and omega-3 polyunsaturated fatty acid supplementation for the treatment of hepatic steatosis in hyperphagic OLETF rats. J Nutr Metab 2012:268680

    Article  PubMed  CAS  Google Scholar 

  • Bouassida A, Chamari K, Zaouali M et al (2010) Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br J Sports Med 44:620–630

    Article  CAS  PubMed  Google Scholar 

  • Caldwell S, Lazo M (2009) Is exercise an effective treatment for NASH? Knowns and unknowns. Ann Hepatol Off J Mex Assoc Hepatol 8 Suppl 1:S60–S66

    Google Scholar 

  • Camacho RC, Pencek RR, Lacy DB et al (2005) Portal venous 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion overcomes hyperinsulinemic suppression of endogenous glucose output. Diabetes 54:373–382

    Article  CAS  PubMed  Google Scholar 

  • Camacho RC, Donahue EP, James FD et al (2006) Energy state of the liver during short-term and exhaustive exercise in C57BL/6J mice. Am J Physiol Endocrinol Metab 290:E405–E408

    Article  CAS  PubMed  Google Scholar 

  • Cariappa R, Kilberg MS (1992) Plasma membrane domain localization and transcytosis of the glucagon-induced hepatic system A carrier. Am J Physiol Metab 263:E1021–E1028

    CAS  Google Scholar 

  • Casey A, Mann R, Banister K et al (2000) Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by 13C MRS. Am J Physiol Endocrinol Metab 278:65–75

    Article  Google Scholar 

  • Christensen NJ, Galbo H (1983) Sympathetic nervous activity during exercise. Annu Rev Physiol 45:139–153

    Article  CAS  PubMed  Google Scholar 

  • Church TS, Kuk JL, Ross R et al (2006) Association of cardiorespiratory fitness, body mass index, and waist circumference to nonalcoholic fatty liver disease. Gastroenterology 130:2023–2030

    Article  CAS  PubMed  Google Scholar 

  • Coker RH, Krishna MG, Brooks Lacy D et al (1997a) Role of hepatic α- and β-adrenergic receptor stimulation on hepatic glucose production during heavy exercise. Am J Physiol Endocrinol Metab 273:831–838

    Article  Google Scholar 

  • Coker RH, Krishna MG, Zinker BA et al (1997b) Sympathetic drive to liver and nonhepatic splanchnic tissue during prolonged exercise is increased in diabetes. Metabolism 46:1327–1332

    Article  CAS  PubMed  Google Scholar 

  • Coker RH, Koyama Y, Lacy DB et al (1999a) Pancreatic innervation is not essential for exercise-induced changes in glucagon and insulin or glucose kinetics. Am J Physiol Endocrinol Metab 277:E1122–E1129

    Article  CAS  Google Scholar 

  • Coker RH, Lacy DB, Krishna MG, Wasserman DH (1999b) Splanchnic glucagon kinetics in exercising alloxan-diabetic dogs. J Appl Physiol 86:1626–1631

    Article  CAS  PubMed  Google Scholar 

  • Coker RH, Lacy DB, Williams PE, Wasserman DH (2000) Hepatic α- and β-adrenergic receptors are not essential for the increase in R(a) during exercise in diabetes. Am J Physiol Endocrinol Metab 278:444–451

    Article  Google Scholar 

  • Coker RH, Williams RH, Yeo SE et al (2009) The impact of exercise training compared to caloric restriction on hepatic and peripheral insulin resistance in obesity. J Clin Endocrinol Metab 94:4258–4266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohm GL, Kasperek GJ, Barakat HA (1985) Time course of changes in gluconeogenic enzyme activities during exercise and recovery. Am J Physiol 249:E6–E11

    CAS  PubMed  Google Scholar 

  • Egan DF, Shackelford DB, Mihaylova MM et al (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461

    Article  CAS  PubMed  Google Scholar 

  • Eriksson LS, Broberg S, Björkman O, Wahren J (1985) Ammonia metabolism during exercise in man. Clin Physiol 5:325–336

    Article  CAS  PubMed  Google Scholar 

  • Evans M, Cogan KE, Egan B (2017) Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation. J Physiol 595:2857–2871

    Article  CAS  PubMed  Google Scholar 

  • Fealy CE, Haus JM, Solomon TPJ et al (2012) Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease. J Appl Physiol 113:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Febbraio MA, Hiscock N, Sacchetti M et al (2004) Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes 53:1643–1648

    Article  CAS  PubMed  Google Scholar 

  • Felig P, Wahren J (1971) Amino acid metabolism in exercising man. J Clin Invest 50:2703–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felig P, Cherif A, Minagawa A, Wahren J (1982) Hypoglycemia during prolonged exercise in normal men. N Engl J Med 306:895–900

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JA, Meers GM, Linden MA et al (2014) Impact of various exercise modalities on hepatic mitochondrial function. Med Sci Sports Exerc 46:1089–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fueger PT, Li CY, Ayala JE et al (2007) Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. J Physiol 582:801–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galassetti P, Coker RH, Lacy DB et al (1999a) Prior exercise increases net hepatic glucose uptake during a glucose load. Am J Physiol Endocrinol Metab 276:E1022–E1029

    Article  CAS  Google Scholar 

  • Galassetti P, Hamilton KS, Gibbons FK et al (1999b) Effect of fast duration on disposition of an intraduodenal glucose load in the conscious dog. Am J Physiol Endocrinol Metab 276:543–552

    Article  Google Scholar 

  • Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves IO, Maciel E, Passos E et al (2014a) Exercise alters liver mitochondria phospholipidomic profile and mitochondrial activity in non-alcoholic steatohepatitis. Int J Biochem Cell Biol 54:163–173

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves IO, Passos E, Rocha-Rodrigues S et al (2014b) Physical exercise prevents and mitigates non-alcoholic steatohepatitis-induced liver mitochondrial structural and bioenergetics impairments. Mitochondrion 15:40–51

    Article  PubMed  CAS  Google Scholar 

  • Haase TN, Ringholm S, Leick L et al (2011) Role of PGC-1 in exercise and fasting-induced adaptations in mouse liver. AJP Regul Integr Comp Physiol 301:R1501–R1509

    Article  CAS  Google Scholar 

  • Hallsworth K, Fattakhova G, Hollingsworth KG et al (2011) Resistance exercise reduces liver fat and its mediators in non-alcoholic fatty liver disease independent of weight loss. Gut 60:1278–1283

    Article  PubMed  Google Scholar 

  • Hamilton KS, Gibbons FK, Bracy DP et al (1996) Effect of prior exercise on the partitioning of an intestinal glucose load between splanchnic bed and skeletal muscle. J Clin Invest 98:125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargreaves M, Spriet LL (2020) Skeletal muscle energy metabolism during exercise. Nat Metab 2:817–828

    Article  CAS  PubMed  Google Scholar 

  • Hasenour CM, Ridley DE, Hughey CC et al (2014) 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. J Biol Chem 309(2):E191–E203

    Google Scholar 

  • Hasenour CM, Wall ML, Ridley DE et al (2015) Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo. Am J Physiol Endocrinol Metab 309:E191–E203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasenour CM, Ridley DE, James FD et al (2017) Liver AMP-activated protein kinase is unnecessary for gluconeogenesis but protects energy state during nutrient deprivation. PLoS One 12:1–18

    Google Scholar 

  • Herzig S, Shaw RJ (2018) AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 19:121–135

    Article  CAS  PubMed  Google Scholar 

  • Hoene M, Lehmann R, Hennige AM et al (2009) Acute regulation of metabolic genes and insulin receptor substrates in the liver of mice by one single bout of treadmill exercise. J Physiol 587:241–252

    Article  CAS  PubMed  Google Scholar 

  • Hughey CC, James FD, Bracy DP et al (2017) Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice. J Biol Chem 292:20125–20140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins AB, Chisholm DJ, James DE et al (1985) Exercise-induced hepatic glucose output is precisely sensitive to the rate of systemic glucose supply. Metabolism 34:431–436

    Article  CAS  PubMed  Google Scholar 

  • Jenkins NT, Padilla J, Arce-Esquivel AA et al (2012) Effects of endurance exercise training, metformin, and their combination on adipose tissue leptin and IL-10 secretion in OLETF rats. J Appl Physiol 113(12):1873–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson NA, Sachinwalla T, Walton DW et al (2009) Aerobic exercise training reduces hepatic and visceral lipids in obese individuals without weight loss. Hepatology 50:1105–1112

    Article  CAS  PubMed  Google Scholar 

  • Kawano K, Hirashima T, Mori S et al (1992) Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41:1422–1428

    Article  CAS  PubMed  Google Scholar 

  • Kjaer M, Engfred K, Fernandes A et al (1993) Regulation of hepatic glucose production during exercise in humans: role of sympathoadrenergic activity. Am J Physiol Endocrinol Metab 265:E275–E283

    Article  CAS  Google Scholar 

  • Koyama Y, Coker RH, Denny JC et al (2001) Role of carotid bodies in control of the neuroendocrine response to exercise. Am J Physiol Endocrinol Metab 281:E742–E748

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y, Galassetti P, Coker RH et al (2002) Prior exercise and the response to insulin-induced hypoglycemia in the dog. Am J Physiol Endocrinol Metab 282:1128–1138

    Article  Google Scholar 

  • Krishna MG, Coker RH, Brooks Lacy D et al (2000) Glucagon response to exercise is critical for accelerated hepatic glutamine metabolism and nitrogen disposal. Am J Physiol Endocrinol Metab 279:E638–E645

    Article  CAS  PubMed  Google Scholar 

  • Lavoie C, Ducros F, Bourque J et al (1997) Glucose metabolism during exercise in man: the role of insulin and glucagon in the regulation of hepatic glucose production and gluconeogenesis. Can J Physiol Pharmacol 75:26–35

    Article  CAS  PubMed  Google Scholar 

  • Lezi E, Lu J, Burns JM, Swerdlow RH (2013) Effect of exercise on mouse liver and brain bioenergetic infrastructures. Exp Physiol 98:207–219

    Article  CAS  Google Scholar 

  • Linden MA, Fletcher JA, Morris EM et al (2014) Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats. Am J Physiol Endocrinol Metab 306:E300–E310

    Article  CAS  PubMed  Google Scholar 

  • Linden MA, Fletcher JA, Morris EM et al (2015) Treating NAFLD in OLETF rats with vigorous-intensity interval exercise training. Med Sci Sports Exerc 47:556–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lins PE, Wajngot A, Adamson U et al (1983) Minimal increases in glucagon levels enhance glucose production in man with partial hypoinsulinemia. Diabetes 32:633–636

    Article  CAS  PubMed  Google Scholar 

  • Long CNH, Katzin B, Fry EG (1940) The adrenal cortex and carbohydrate metabolism. Endocrinology 26:309–344

    Article  CAS  Google Scholar 

  • Maehlum S, Felig P, Wahren J (1978) Splanchnic glucose and muscle glycogen metabolism after glucose feeding during postexercise recovery. Am J Physiol Endocrinol Metab Gastrointest Physiol 4:E255

    Google Scholar 

  • Marliss EB, Purdon C, Halter JB et al (1992) Glucoregulation during and after intense exercise in control and diabetic subjects. In: Diabetes mellitus and exercise. Smith-Gordon, London, pp 173–188

    Google Scholar 

  • Marques CMM, Motta VF, Torres TS, Aguila MB (2010) Beneficial effects of exercise training (treadmill) on insulin resistance and nonalcoholic fatty liver disease in high-fat fed C57BL/6 mice. Med Biol 43:467–475

    CAS  Google Scholar 

  • Matsuhisa M, Nishizawa H, Ikeda M et al (1998) Prior muscular contraction enhances disposal of glucose analog in the liver and muscle. Metabolism 47:44–49

    Article  CAS  PubMed  Google Scholar 

  • Morris EM, Jackman MR, Johnson GC et al (2014) Intrinsic aerobic capacity impacts susceptibility to acute high-fat diet-induced hepatic steatosis. Am J Physiol Endocrinol Metab 307:E355–E364

    Article  CAS  PubMed  Google Scholar 

  • Morris EM, McCoin CS, Allen JA et al (2017) Aerobic capacity mediates susceptibility for the transition from steatosis to steatohepatitis. J Physiol 595:4909–4926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissim I, Brosnan ME, Yudkoff M et al (1999) Studies of hepatic glutamine metabolism in the perfused rat liver with 15 N-labeled glutamine. J Biol Chem 274:28958–28965

    Article  CAS  PubMed  Google Scholar 

  • Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465

    Article  CAS  PubMed  Google Scholar 

  • Pencek RR, James F, Lacy DB et al (2003a) Interaction of insulin and prior exercise in control of hepatic metabolism of a glucose load. Diabetes 52:1897–1903

    Article  CAS  PubMed  Google Scholar 

  • Pencek RR, Koyama Y, Lacy DB et al (2003b) Prior exercise enhances passive absorption of intraduodenal glucose. J Appl Physiol 95:1132–1138

    Article  CAS  PubMed  Google Scholar 

  • Pencek RR, James FD, Lacy DB et al (2004) Exercise-induced changes in insulin and glucagon are not required for enhanced hepatic glucose uptake after exercise but influence the fate of glucose within the liver. Diabetes 53:3041–3047

    Article  CAS  PubMed  Google Scholar 

  • Pencek RR, Shearer J, Camacho RC et al (2005) 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside causes acute hepatic insulin resistance in vivo. Diabetes 54:355–360

    Article  CAS  PubMed  Google Scholar 

  • Perseghin G, Lattuada G, De Cobelli F et al (2007) Habitual physical activity is associated with intrahepatic fat content in humans. Diabetes Care 30:683–688

    Article  CAS  PubMed  Google Scholar 

  • Puchalska P, Crawford PA (2017) Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab 25:262–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rector RS, Thyfault JP, Morris RT et al (2008) Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats. Am J Physiol Gastrointest Liver Physiol 294:G619–G626

    Article  CAS  PubMed  Google Scholar 

  • Rector RS, Uptergrove GM, Morris EM et al (2011) Daily exercise vs. caloric restriction for prevention of nonalcoholic fatty liver disease in the OLETF rat model. Am J Physiol Gastrointest Liver Physiol 300:G874–G883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS et al (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265:E380–E391

    CAS  PubMed  Google Scholar 

  • Schultz A, Mendonca LS, Aguila MB, Mandarim-de-Lacerda CA (2012) Swimming training beneficial effects in a mice model of nonalcoholic fatty liver disease. Exp Toxicol Pathol 64:273–282

    Article  CAS  PubMed  Google Scholar 

  • Seldin MM, Lei X, Tan SY et al (2013) Skeletal muscle-derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver. J Biol Chem 288:36073–36082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shojaee-Moradie F, Baynes KCR, Pentecost C et al (2007) Exercise training reduces fatty acid availability and improves the insulin sensitivity of glucose metabolism. Diabetologia 50:404–413

    Article  CAS  PubMed  Google Scholar 

  • Sigal RJ, Fisher S, Marliss EB (1994) Catecholamines are the primary regulators of glucose production (Ra) during intense exercise: definition using the islet-cell clamp (IC). Diabetes 43:159A

    Google Scholar 

  • Sigal RJ, Fisher S, Halter JB et al (1996) The roles of catecholamines in glucoregulation in intense exercise as defined by the islet cell clamp technique. Diabetes 45:148–156

    Article  CAS  PubMed  Google Scholar 

  • Sigal RJ, Kenny GP, Wasserman DH, Castaneda-Sceppa C (2004) Physical activity/exercise and type 2 diabetes. Diabetes Care 27:2518–2539

    Article  PubMed  Google Scholar 

  • Sullivan S, Kirk EP, Mittendorfer B et al (2012) Randomized trial of exercise effect on intrahepatic triglyceride content and lipid kinetics in nonalcoholic fatty liver disease. Hepatology 55:1738–1745

    Article  CAS  PubMed  Google Scholar 

  • Tamura Y, Tanaka Y, Sato F et al (2005) Effects of diet and exercise on muscle and liver intracellular lipid contents and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 90:3191–3196

    Article  CAS  PubMed  Google Scholar 

  • Teresa Arias-Loste M, Ranchal I, Romero-Gómez M, Crespo J (2014) Irisin, a link among fatty liver disease, physical inactivity and insulin resistance. Int J Mol Sci 15:23163–23178

    Article  CAS  Google Scholar 

  • Thomas LK, Ittmann M, Cooper C (1982) The role of leucine in ketogenesis in starved rats. Biochem J 204:399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thyfault JP, Scott Rector R (2020) Exercise combats hepatic steatosis: potential mechanisms and clinical implications. Diabetes 69:517–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trefts E, Williams AS, Wasserman DH (2015) Exercise and the regulation of hepatic metabolism. Prog Mol Biol Transl Sci 135:203–225

    Article  PubMed  PubMed Central  Google Scholar 

  • Tuttle KR, Marker JC, Dalsky GP et al (1988) Glucagon, not insulin, may play a secondary role in defense against hypoglycemia during exercise. Am J Physiol Endocrinol Metab 254:713–719

    Article  Google Scholar 

  • Unger RH, Orci L (1976) Physiology and pathophysiology of glucagon. Physiol Rev 56:778–826

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden G-J, Wang ZJ, Chu ZD et al (2010) A 12-week aerobic exercise program reduces hepatic fat accumulation and insulin resistance in obese, Hispanic adolescents. Obesity (Silver Spring) 18:384–390

    Article  Google Scholar 

  • Van Loon LJC (2014) Is there a need for protein ingestion during exercise? Sport Med 44:105–111

    Article  Google Scholar 

  • Wahren J, Sato Y, Ostman J et al (1984) Turnover and splanchnic metabolism of free fatty acids and ketones in insulin-dependent diabetics at rest and in response to exercise. J Clin Invest 73:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasserman DH (2009) Four grams of glucose. Am J Physiol Endocrinol Metab 296:11–21

    Article  CAS  Google Scholar 

  • Wasserman DH, Lickley HLA, Vranic M (1984) Interactions between glucagon and other counterregulatory hormones during normoglycemic and hypoglycemic exercise in dogs. J Clin Invest 74:1404–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasserman DH, Williams PE, Lacy DB et al (1988) Importance of intrahepatic mechanisms to gluconeogenesis from alanine during exercise and recovery. Am J Physiol Metab 254:E518–E525

    CAS  Google Scholar 

  • Wasserman DH, Lacy DB, Goldstein RE et al (1989a) Exercise-induced fall in insulin and increase in fat metabolism during prolonged muscular work. Diabetes 38:484–490

    Article  CAS  PubMed  Google Scholar 

  • Wasserman DH, Spalding JA, Bracy D et al (1989b) Exercise-induced rise in glucagon and ketogenesis during prolonged muscular work. Diabetes 38:799–807

    Article  CAS  PubMed  Google Scholar 

  • Wasserman DH, Spalding JA, Lacy DB et al (1989c) Glucagon is a primary controller of hepatic glycogenolysis and gluconeogenesis during muscular work. Am J Physiol Endocrinol Metab 257:E108–E117

    Article  CAS  Google Scholar 

  • Wasserman DH, Geer RJ, Williams PE et al (1991a) Interaction of gut and liver in nitrogen metabolism during exercise. Metabolism 40:307–314

    Article  CAS  PubMed  Google Scholar 

  • Wasserman DH, Lacy DB, Colburn CA et al (1991b) Efficiency of compensation for absence of fall in insulin during exercise. Am J Physiol Endocrinol Metab 261:E811–E824

    Article  Google Scholar 

  • Wasserman DH, Lacy DB, Bracy D, Williams PE (1992) Metabolic regulation in peripheral tissues and transition to increased gluconeogenic mode during prolonged exercise. Am J Physiol Endocrinol Metab 263:345–354

    Article  Google Scholar 

  • Wasserman DH, Lacy DB, Bracy DP (1993) Relationship between arterial and portal vein immunoreactive glucagon during exercise. J Appl Physiol 75:724–729

    Article  CAS  PubMed  Google Scholar 

  • Williams BD, Wolfe RR, Bracy DP, Wasserman DH (1996) Gut proteolysis contributes essential amino acids during exercise. Am J Physiol 270:E85–E90

    CAS  PubMed  Google Scholar 

  • Wolfe RR, Nadel ER, Shaw JHF, Stephenson LA (1986) Role of changes in insulin and glucagon in glucose homeostasis in exercise. J Clin Invest 77:900–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelber-Sagi S, Nitzan-Kaluski D, Goldsmith R et al (2008) Role of leisure-time physical activity in nonalcoholic fatty liver disease: a population-based study. Hepatology 48:1791–1798

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge grants DK050277, DK054902, and DK059637 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Wasserman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trefts, E., Wasserman, D.H. (2022). Role and Regulation of Hepatic Metabolism During Exercise. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_11

Download citation

Publish with us

Policies and ethics