Skip to main content

A Brief History of Exercise Metabolism

  • Chapter
  • First Online:
Exercise Metabolism

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

The source of energy utilized during physical activity has been of intense scientific interest for at least two centuries. This chapter briefly describes how (and why) each of the three major macronutrients—i.e., protein, carbohydrate, and fat—has alternately had their moments in the sun. Specifically, although until the 1860s protein was considered to be the only fuel used during exercise, first carbohydrate, then fat, and then again carbohydrate held sway from the 1860s until World War II, from World War II until the late 1960s, and from the late 1960s to ca. 1990, respectively. It is now widely recognized, however, that contracting muscle relies upon a mixture of carbohydrate, fat, and even a small amount of protein to provide its energy needs, with the relative importance of each varying with the exercise intensity and duration, the characteristics (e.g., nutritional state, physical fitness) of the individual, etc. Thus, although substrate metabolism during exercise is now understood in greater detail than ever before, the overall picture has come full circle to that described by Zuntz at the start of the twentieth century.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Even so, Hill seemed to stubbornly cling to his and Meyerhof’s original beliefs, first proposing in 1933 that the “lactacid” portion of post-exercise O2 consumption was due to the resynthesis of glycogen from lactate Margaria et al. (1933) and then in 1950 emphasizing that direct proof of ATP hydrolysis during contractions was still lacking:

    In the lactic acid era the evidence that the formation of lactic acid was the cause and provided the energy for contraction seemed pretty good. In the phosphagen era a similar attribution to phosphagen appeared even better justified. Now, in the adenosinetriphosphate era lactic acid and phosphagen have been relegated to recovery and ATP takes their place. Those of us who have lived through two revolutions are wondering whether and when the third is coming. (Hill 1950)

    Hill’s famous “challenge to biochemists” was only finally met in 1962, when Cain and Davies (1962) were able to demonstrate small but significant and reciprocal changes in ATP and adenosine diphosphate (ADP) in contracting frog muscle by inhibiting creatine kinase using 1-fluoro-2,4-dinitrobenzene.

  2. 2.

    Although studies using 14C-labeled fatty acids highlighted their own importance as an energy source during exercise, they also resurrected the long-standing question of the role played by tissue (muscle) lipid stores. Specifically, oxidation of plasma fatty acids was generally found to account for only about half of the total amount of fat oxidized during exercise, as determined via indirect calorimetry (e.g., Havel et al. 1967). However, similar to earlier studies (Leathes 1904, Lafon 1913), attempts in the 1950s and 1960s to directly demonstrate utilization of muscle lipids during contractions were met with mixed success (Volk et al. 1952; George and Naik 1958; Neptune et al. 1960; Masoro et al. 1966; Carlson 1967).

  3. 3.

    For a full history of the method, see Waclawik and Lanska (2019).

References

  • Ahlborg B, Bergström J, Ekelund L-G, Hultman E (1967) Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta Physiol Scand 70:129–140

    Article  CAS  Google Scholar 

  • Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J (1974) Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest 53:1080–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ă…strand I (1958) The physical work capacity of workers 50-64 years old. Acta Physiol Scand 42:73–86

    Article  PubMed  Google Scholar 

  • Baldwin KM, Klinkerfuss GH, Terjung RL, MolĂ© PA, Holloszy JO (1972) Respiratory capacity of white, red, and intermediate muscle: adaptive response to exercise. Am J Phys 222:363–378

    Google Scholar 

  • Barnes RH, Drury DR (1937) Utilization of ketone bodies by the tissues in ketosis. Proc Soc Exp Biol Med 36:350–352

    Article  Google Scholar 

  • Barrenscheen HK, Filz W (1932) Untersuchungen zur Frage der Co-Fermentwirkung. II. Mitteilung: Zur Chemie der Adenosintriphosphorsäuren. Biochem Z 250:281–304

    Google Scholar 

  • Benedict FG, Cathcart EP (1913) Muscular work. A metabolic study with special references to the efficiency of the human body as a machine. Carnegie Institution, Washington, DC

    Book  Google Scholar 

  • Bergström J, Guarnieri G, Hultman E (1971) Carbohydrate metabolism and electrolyte changes in human muscle tissue during heavy work. J Appl Physiol 30:122–125

    Article  PubMed  Google Scholar 

  • Bergström J, Hermansen L, Hultman E, Saltin B (1967) Diet, muscle glycogen, and physical performance. Acta Physiol Scand 71:140–150

    Article  PubMed  Google Scholar 

  • Bergström J, Hultman E (1966a) Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature 210:309–310

    Article  PubMed  Google Scholar 

  • Bergström J, Hultman E (1966b) The effect of exercise on muscle glycogen and electrolytes in normals. Scand J Clin Lab Invest 18:16–20

    Article  PubMed  Google Scholar 

  • Bergström J, Hultman E, Saltin B (1973) Muscle glycogen consumption during cross-country skiing (the vasa ski race). Int Z Angew Physiol 31:71–75

    PubMed  Google Scholar 

  • Berzelius M, Berzelius JJ (1806–1808) Föreläsningar i djurkemien. C DelĂ©n, Stockholm

    Google Scholar 

  • Bischoff TLW, Voit C (1860) Die Gesetze der Ernährung des Fleischfressers durch neue Untersuchungen festgestellt. CF Winter’sche Verlagahadlung, Leipzig and Heidelberg

    Google Scholar 

  • Blatchford FJ, Knowlton RG, Da S (1985) Plasma FFA responses to prolonged walking in untrained men and women. Eur J Appl Physiol 53:343–347

    Article  CAS  Google Scholar 

  • Blixenkrone-Møller N (1938) Ăśber den Abbau von Ketonkörpern. Z Physiol Chem 253:261–275

    Article  Google Scholar 

  • Cain DF, Davies RE (1962) Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun 8:361–366

    Article  CAS  PubMed  Google Scholar 

  • Carlson LA (1967) Lipid metabolism and muscular work. Fed Proc 26:1755–1759

    CAS  PubMed  Google Scholar 

  • Carlson LA, Pernow B (1961) Studies on blood lipids during exercise. II. The arterial plasma-free fatty acid concentration during and after exercise and its regulation. J Lab Clin Invest 58:673–681

    CAS  Google Scholar 

  • Carpenter KJ (2003) A short history of nutritional science: part 1 (1785–1885). J Nutr 133:638–645

    Article  CAS  PubMed  Google Scholar 

  • Charrière M, Duchenne GB (1865) Emporte pièce histologique. Bull Acad Natl Med 30:1050–1051

    Google Scholar 

  • Chauveau A (1896) Source et nature du potential directment utilisĂ© dans la travail musculairs d’asprès les exchanges respiratories, chez l’hormme en Ă©tat d’abstinence. CR Acad Sci Paris 122:1163–1221

    Google Scholar 

  • Coffey VG, Hawley JA (2007) The molecular bases of training adaptation. Sports Med 37:737–763

    Article  PubMed  Google Scholar 

  • Coggan AR (1991) Plasma glucose metabolism during exercise in humans. Sports Med 11:102–124

    Article  CAS  PubMed  Google Scholar 

  • Coggan AR (1996) Effect of endurance training on glucose metabolism during exercise: stable isotope studies. In: Maughan RJ, Shirreffs SM (eds) Biochemistry of exercise IX. Human Kinetics, Champaign IL, pp 26–36

    Google Scholar 

  • Coggan AR (1999a) Use of stable isotopes to study carbohydrate and fat metabolism at the whole-body level. Proc Nutr Soc 58:953–961

    Article  CAS  PubMed  Google Scholar 

  • Coggan AR (1999b) Effects of gender and aging on substrate metabolism during exercise. In: Lamb DR, Murray R (eds) Perspectives in exercise science and sports medicine, The metabolic basis of performance in exercise and sport, vol 12. Cooper, Carmel, IN, pp 355–387

    Google Scholar 

  • Coggan AR (2014) Metabolic systems: substrate utilization (1910-2010). In: Tipton CM (ed) History of exercise physiology. Human Kinetics, Champaign IL, pp 423–446

    Google Scholar 

  • Coggan AR, Abduljalil AM, Swanson SC, Earle MS, Farris JW, Mendenhall LA, Robitaille P-M (1993) Muscle metabolism during exercise in young and older untrained and endurance-trained men. J Appl Physiol 75:2125–2133

    Article  CAS  PubMed  Google Scholar 

  • Coggan AR, Coyle EF (1987) Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol 63:2388–2395

    Article  CAS  PubMed  Google Scholar 

  • Coggan AR, Kohrt WM, Spina RJ, Bier DM, Holloszy JO (1990) Endurance training decreases plasma glucose turnover and oxidation during moderate intensity exercise in men. J Appl Physiol 68:990–996

    Article  CAS  PubMed  Google Scholar 

  • Coggan AR, Raguso CA, Gastaldelli A, Sidossis LS, Yeckel CW (2000) Fat metabolism during high intensity exercise in endurance-trained and untrained men. Metabolism 49:122–128

    Article  CAS  PubMed  Google Scholar 

  • Coggan AR, Raguso CA, Williams BD, Sidossis LS, Gastaldelli A (1995a) Glucose kinetics during high-intensity exercise in endurance-trained and untrained humans. J Appl Physiol 78:1203–1207

    Article  CAS  PubMed  Google Scholar 

  • Coggan AR, Spina RJ, Rogers MA, King DS, Brown M, Nemeth PM, Holloszy JO (1992) Histochemical and enzymatic comparison of the gastrocnemius muscle of young and elderly men and women. J Geront 47:B71–B76

    Article  CAS  PubMed  Google Scholar 

  • Coggan AR, Swanson SC, Mendenhall LA, Habash DL, Kien CL (1995b) Effect of endurance training on hepatic glycogenolysis and gluconeogenesis during prolonged exercise in men. Am J Phys 268:E375–E383

    CAS  Google Scholar 

  • Coggan AR, Williams BD (1995) Metabolic adaptations to endurance training: substrate metabolism during exercise. In: Hargreaves M (ed) Exercise Metabolism. Human Kinetics, Champaign IL, pp 177–210

    Google Scholar 

  • Costill DL, Bowers R, Branam G, Sparks K (1971) Muscle glycogen utilization during prolonged exercise on successive days. J Appl Physiol 31:834–838

    Article  CAS  PubMed  Google Scholar 

  • Costill DL, Fink WJ, Getchell LH, Ivy JL, Witzmann F (1979) Lipid metabolism in skeletal muscle of endurance-trained males and females. J Appl Physiol 47:781–791

    Article  Google Scholar 

  • Costill DL, Gollnick PD, Jansson ED, Saltin B, Stein EM (1973) Glycogen depletion pattern in human muscle fibres during distance running. Acta Physiol Scand 89:374–383

    Article  CAS  PubMed  Google Scholar 

  • Coyle EF, Coggan AR, Hemmert MK, Ivy JL (1986) Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 61:165–172

    Article  CAS  PubMed  Google Scholar 

  • de Fourcroy A (1789) Extrait dun mĂ©moire la ayant pour titre recherches pour servir Ă  l'historie du gaz azote ou de la mofette, comme principe des matières animals. Ann Chim 1:40–46

    Google Scholar 

  • Devries MC (2016) Sex-based differences in endurance exercise muscle metabolism: impact on exercise and nutritional strategies to optimize health and performance in women. Exp Physiol 101:243–249

    Article  PubMed  Google Scholar 

  • Drury DR, Wick AN, MacKay EM (1941) The action of exercise on ketosis. Am J Phys 134:761–768

    Article  CAS  Google Scholar 

  • du Bois-Reymond EH (1859) On the supposed acid reaction of muscular fibre. Philos Mag Series 4(18):544–546

    Article  Google Scholar 

  • Durnin JVGA, Mikulicic V (1956) The influence of graded exercise on oxygen consumption, pulmonary ventilation and heart rate of young and elderly men. Q J Exper Physiol 41:422–452

    Google Scholar 

  • Eggleton P, Eggleton GP (1927) XXV. The inorganic phosphate and a labile form of organic phosphate in the gastrocnemius of the frog. Biochem J 21:190–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans WJ, Bennett AS, Costill DL, Fink WJ (1979) Leg muscle metabolism in trained and untrained men. Res Q 50:350–350

    CAS  PubMed  Google Scholar 

  • Fick A, Wislicenus J (1866) LXX. On the origin of muscle power. Philos Mag Series 4 31:485–503

    Article  Google Scholar 

  • Fiske CH, SubbaRow Y (1927) The nature of the “inorganic phosphate” in voluntary muscle. Science 65:401–403

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, SubbaRow Y (1929) Phosphorous compounds of muscle and liver. Science 70:381–382

    Article  CAS  PubMed  Google Scholar 

  • Fitts RH, Booth FW, Winder WW, Holloszy JO (1975) Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am J Phys 228:1029–1033

    Article  CAS  Google Scholar 

  • Fletcher WM, Hopkins FG (1907) Lactic acid in amphibian muscle. J Physiol Lond 35:247–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frankland E (1866) On the source of muscular power. Proc Roy Inst Great Brit 4:661–685

    Google Scholar 

  • Frentzel J, Reach F (1901) Untersuchungen zur Frage nach der Quelle der Muskelkraft. PflĂĽger’s Arch 83:447

    Google Scholar 

  • Friedberg SJ, Estes EH (1961) Direct evidence for the oxidation of free fatty acids by peripheral tissues. J Clin Invest 41:677–681

    Article  Google Scholar 

  • Friedberg SJ, Harlan WR Jr, Trout DL, Estes EH (1960) The effect of exercise on the concentration and turnover of plasma nonesterified fatty acids. J Clin Invest 39:215–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedberg SJ, Sjer PB, Bogdonoff MD, Estes EH (1963) The dynamics of plasma free fatty acid metabolism during exercise. J Lipid Res 4:34–38

    Article  CAS  PubMed  Google Scholar 

  • Fritz IB, Davis DG, Holtrop RH, Dundee H (1958) Fatty acid oxidation by skeletal muscle during rest and activity. Am J Phys 194:379–386

    Article  CAS  Google Scholar 

  • Froberg K, Pedersen PK (1984) Sex differences in endurance capacity and metabolic responses to prolonged heavy exercise. Eur J Appl Physiol 52:446–450

    Article  CAS  Google Scholar 

  • Gemmill CL (1942) The fuel for muscular exercise. Physiol Rev 22:32–53

    Article  CAS  Google Scholar 

  • George J, Naik RM (1958) Relative distribution and chemical nature of the fuel store of the two types of fibres in the pectoralis major muscle of the pigeon. Nature 181:709

    Article  CAS  PubMed  Google Scholar 

  • Gollnick PD, Armstrong RB, Saltin B, Saubert CW 4th, Sembrowich CL, Shepherd RE (1973) Effect of training on enzyme activity and fiber composition of human skeletal muscle. J Appl Physiol 34:107–111

    Article  CAS  PubMed  Google Scholar 

  • Gollnick PD, Armstrong RB, Saubert CW IV, Piehl K, Saltin B (1972) Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J Appl Physiol 33:312–319

    Article  CAS  PubMed  Google Scholar 

  • Hagberg JM, Coyle EF, Baldwin KM, Cartee GD, Fontana L, Joyner MJ, Kirwan JP, Seals DR, Weiss EP (2019) The historical context and scientific legacy of John O. Holloszy J Appl Physiol 127:277–305

    Article  CAS  PubMed  Google Scholar 

  • Harold H (1951) Origin of the word “protein”. Nature 168:244

    Google Scholar 

  • Havel RJ, Carlson LA, Ekelund L-G, Holmgren A (1964) Turnover rate and oxidation of different free fatty acids in man during exercise. J Appl Physiol 19:613–618

    Article  CAS  PubMed  Google Scholar 

  • Havel RJ, Naimark A, Borchgrevink CF (1963) Turnover rate and oxidation of free fatty acids of blood plasma in man during exercise: studies during continuous infusion of palmitate-1-C14. J Clin Invest 42:1054–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havel RJ, Pernow B, Jones NL (1967) Uptake and release of free fatty acids and other metabolites in the legs of exercising men. J Appl Physiol 23:90–99

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Maughan RJ, Hargreaves M (2015) Exercise metabolism: historical perspective. Cell Metab 22:12–17

    Article  CAS  PubMed  Google Scholar 

  • Heidenhain R (1864) Mechanische Leistung. Stoffumsatz bei Muskeltätigkeit–Buch neu kaufen, Wärmeentwicklung und

    Google Scholar 

  • Heinemann HN (1901) Experimentelle Untersuchung am Menschen ĂĽber den Einfluss der Muskelarbeit auf den Stoffverbrauch und die Bedeutung der einzelnen Nährstoffe als Quelle der Muskelkraft. PflĂĽger’s Arch 83:441

    Article  CAS  Google Scholar 

  • Helgerud J, Ingjer F, Strömme SB (1990) Sex differences in performance-matched marathon runners. Eur J Appl Physiol 61:433–439

    Article  CAS  Google Scholar 

  • Hermansen LE, Hultman E, Saltin B (1967) Muscle glycogen during prolonged severe exercise. Acta Physiol Scand 71:129–139

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1910) The heat produced in contracture and muscle tone. J Physiol Lond 40:389–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AV (1913) The energy degraded in recovery processes of stimulated muscles. J Physiol Lond 46:28–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill AV (1914) The oxidative removal of lactic acid. J Physiol Lond 48:x–xi

    CAS  Google Scholar 

  • Hill AV (1932) The revolution in muscle physiology. Physiol Rev 12:56–67

    Article  CAS  Google Scholar 

  • Hill AV (1950) A challenge to biochemists. Biochim Biophys Acta 4:4–11

    Article  CAS  PubMed  Google Scholar 

  • Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242:2278–2282

    Article  CAS  PubMed  Google Scholar 

  • Holloszy JO (1973) Biochemical adaptations to exercise: aerobic metabolism. In: Wilmore JH (ed) Exercise and sport sciences reviews, vol 1. Academic Press, New York, pp 45–71

    Google Scholar 

  • Holloszy JO, Coyle EF (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. J Appl Physiol 56:831–838

    Article  CAS  PubMed  Google Scholar 

  • Holloszy JO, Oscai LB, Don IJ, MolĂ© PA (1970) Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem Biophys Res Commun 40:1368–1373

    Article  CAS  PubMed  Google Scholar 

  • Holmes FL (1963) Elementary analysis and the origins of physiological chemistry. Isis 54:50–18

    Article  CAS  Google Scholar 

  • Houmard JA (2008) Intramuscular lipid oxidation and obesity. Am J Phys 294:R1111–RR116

    CAS  Google Scholar 

  • Hurley BF, Nemeth PM, Martin WH 3rd, Hagberg JM, Dalsky GP, Holloszy JO (1986) Muscle triglyceride utilization during exercise: effect of training. J Appl Physiol 60:562–567

    Article  CAS  PubMed  Google Scholar 

  • Issekutz B Jr, Miller HI, Paul P, Rodahl K (1965) Aerobic work capacity and plasma FFA turnover. J Appl Physiol 20:293–296

    Article  CAS  Google Scholar 

  • Jones NL, Havel RJ (1967) Metabolism of free fatty acids and chylomicron triglycerides during exercise in rats. Am J Phys 213:824–828

    Article  CAS  Google Scholar 

  • Karlsson J, Nordesjo L-O, Saltin B (1974) Muscle glycogen utilization during exercise after physical training. Acta Physiol Scand 90:210–217

    Article  CAS  PubMed  Google Scholar 

  • Kemp GJ, Radda GK (1994) Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q 10:43–63

    CAS  PubMed  Google Scholar 

  • Keul J, Doll E, Keppler D (1967) The substrate supply of the human skeletal muscle at rest, during and after work. Experientia 23:974–979

    Article  CAS  PubMed  Google Scholar 

  • Krebs HA (1964) The citric acid cycle. Nobel lectures, physiology or medicine 1942–1962. Elsevier, Amsterdam, p 399

    Google Scholar 

  • Krogh A, Lindhard J (1920) The relative value of fat and carbohydrate as sources of muscular energy. Biochem J 14:290–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafon G (1913) Sur la consommalion des graisses dans I'organisme animal. CR Acad Sci Paris 156:1248–1250

    CAS  Google Scholar 

  • Leathes JB (1906) Problems in animal metabolism. A course of lectures given in the physiological Laboratory of the London University at South Kensington in the summer term, 1904. Blakiston’s Son & Co, Philadelphia, p 99

    Google Scholar 

  • Lohman K (1929) Ăśber die Pyrophosphatfraktion im Muskel. Naturwissenschaften 17:624–625

    Google Scholar 

  • Lohman K (1934) Ăśber die enzymatische Aufspaltung der Kreatinphosphorsäure zugleich ein Beitrag zum Chemismis der Muskelkontraktion. Biochem Z 271:264–277

    Google Scholar 

  • Lundsgaard E (1930a) Untersuchungen ĂĽber Muskel-Kontraktionen ohne Milchsäurebildung. Biochem Z 217:162–177

    CAS  Google Scholar 

  • Lundsgaard E (1930b) Weitere Untersuchungen ĂĽber Muskelkontraktionen ohne Milchsäurebildung. Biochem Z 227:51–83

    CAS  Google Scholar 

  • Lundsgaard E (1931) Ăśber die Energetik der anaeroben Muskelkontraktion. Biochem Z 233:322–343

    CAS  Google Scholar 

  • Lundsgaard E (1932) Betydningen af fænomenet “mælkesyrefri muskelkontraktioner” for opfattelsen af muskelkontraktionens kemi. Hospitalstidende 75:84–95

    Google Scholar 

  • Lundsgaard E (1938) The Pasteur-Meyerhof reaction in muscle metabolism. Bull NY Acad Sci 14:163–182

    CAS  Google Scholar 

  • Margaria R, Edwards HT, Dill DB (1933) The possible mechanisms of contracting and paying the oxygen debt and the role of lactic acid in muscular contraction. Am J Phys 106:689–615

    Article  CAS  Google Scholar 

  • Marsh ME, Murlin JR (1928) Muscular efficiency on high carbohydrate and high fat diets. J Nutr 1:105–137

    Article  CAS  Google Scholar 

  • Martin WH 3rd, Dalsky GP, Hurley BF, Matthews DE, Bier DM, Hagberg JM, Rogers MA, King DS, Holloszy JO (1993) Effect of endurance training on plasma free fatty acid turnover and oxidation during exercise. Am J Phys 265:E708–E714

    CAS  Google Scholar 

  • Martin B, Robinson S, Robertshaw D (1978) Influence of diet on leg uptake of glucose during heavy exercise. Am J Clin Nutr 31:62–67

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K (1991) The discovery of adenosine triphosphate and the establishment of its structure. J Hist Biol 24:145154

    Google Scholar 

  • Masoro EJ, Rowell LB, McDonald RM, Steiert B (1966) Skeletal muscle lipids. II. Nonutilization of intracellular lipid esters as an energy source for contractile activity. J Biol Chem 241:2626–2634

    Article  CAS  PubMed  Google Scholar 

  • McNelly WC (1936) Some effects of training on the respiratory response to exercise. Am J Phys 116:100–101

    Google Scholar 

  • Mendenhall LA, Swanson SC, Habash DL, Coggan AR (1994) Ten days of exercise training reduces glucose production and utilization during moderate-intensity exercise. Am J Phys 266:E136–E143

    CAS  Google Scholar 

  • Meyerhof O, Suranyi J (1927) Ăśber die Wärmetönungen der chemische Reaktionsphasen im Muskel. Biochem Z 191:106–124

    CAS  Google Scholar 

  • Mittendorfer B, Klein S (2001) Effect of aging on glucose and lipid metabolism during endurance exercise. Int J Sports Nutr Exerc Metab 11(Suppl):S86–S91

    Article  CAS  Google Scholar 

  • MolĂ© PA, Holloszy JO (1971) Adaptation of muscle to exercise. Increase in the levels of palmityl CoA synthetase, carnitine palmityltransferase, and palmityl CoA dehydrogenase, and in the capacity to oxidize fatty acids. J Clin Invest 50:2323–2330

    Article  PubMed  PubMed Central  Google Scholar 

  • Morgan TE, Cobb LA, Short FA, Ross R, Gunn DR (1971) Effect of long-term exercise on human muscle mitochondria. In: Pernow B, Saltin B (eds) Muscle metabolism during exercise. Plenum, New York, pp 87–95

    Chapter  Google Scholar 

  • Mulder GJ (1838) Sur la composition de quelques substances animales. Bulletin des Sciences Physiques et Naturelles en NĂ©erlande 104-119

    Google Scholar 

  • Neptune EM, Sudduth HC, Foreman DR, Fash FJ (1960) Phospholipid and triglyceride metabolism of excised rat diaphragm and the role of these lipids in fatty acid uptake and oxidation. J Lipid Res 1:229–235

    Article  CAS  PubMed  Google Scholar 

  • Neufeld AH, Ross WD (1943) Blood ketone bodies in relation to carbohydrate metabolism in muscular exercise. Am J Phys 138:747–752

    Article  CAS  Google Scholar 

  • Paul P, Issekutz B Jr (1967) Role of extramuscular energy sources in the metabolism of exercising dogs. J Appl Physiol 22:615–622

    Article  CAS  PubMed  Google Scholar 

  • Pette D, Vrbová G (2017) The contribution of neuromuscular stimulation in elucidating muscle plasticity revisited. Eur J Transl Myol 27:6368

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips SM, Atkinson SA, Tarnopolsky MA, MacDougall JD (1993) Gender differences in leucine kinetics and nitrogen balance in endurance athletes. J Appl Physiol 75:2134–2141

    Article  CAS  PubMed  Google Scholar 

  • Powers SK, Riley W, Howley ET (1980) Comparison of fat metabolism between trained men and women during prolonged aerobic work. Res Q Exerc Sport 51:427–431

    Article  CAS  PubMed  Google Scholar 

  • Robinson S (1938) Experimental studies of physical fitness in relation to age. Arbeit 10:251–323

    Google Scholar 

  • Röckl KSC, Witczak CA, Goodyear LJ (2008) Signaling mechanisms in skeletal muscle: acute responses and chronic adaptations to exercise. IUBMB Life 60:145–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rowell LB, Masoro EJ, Spencer MJ (1965) Splanchnic metabolism in exercising man. J Appl Physiol 20:1032–1037

    Article  CAS  PubMed  Google Scholar 

  • Saltin B, Nazar K, Costill DL, Stein E, Jansson E, EssĂ©n B, Gollnick PD (1976) The nature of the training response; peripheral and central adaptations to one-legged exercise. Acta Physiol Scand 96:289–305

    Article  CAS  PubMed  Google Scholar 

  • Sial S, Coggan AR, Carroll R, Goodwin JS, Klein S (1996) Fat and carbohydrate metabolism during exercise in elderly and young subjects. Am J Phys 271:E983–E989

    CAS  Google Scholar 

  • Smith E (1862) On the elimination of urea and urinary water. Philos Trans R Soc London 151:747–834

    Google Scholar 

  • Steinhaus AH (1941) Exercise Ann Rev Physiol 3:695–716

    Article  Google Scholar 

  • Talanian JL, Holloway GP, Snook LA, Heigenhauser GJ, Bonen A, Spriet L (2010) Exercise training increases sarcolemmal and mitochondrial fatty acid transport proteins in human skeletal muscle. Am J Phys 299:E180–E188

    CAS  Google Scholar 

  • Tarnopolsky MA, Atkinson SA, Phillips SM, MacDougall JD (1995) Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol 78:1360–1368

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky MA, Bosman M, MacDonald JR, Vandeputte D, Martin J, Roy BD (1997) Post-exercise protein-carbohydrate and carbohydrate supplements increase muscle glycogen in men and women. J Appl Physiol 83:1877–1883

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA, Sutton JR (1990) Gender differences in substrate for endurance exercise. J Appl Physiol 68:302–308

    Article  CAS  PubMed  Google Scholar 

  • Tarnopolsky MA, Ruby BC (2001) Sex differences in carbohydrate metabolism. Curr Opin Clin Nutr Metab Care 4:521–526

    Article  CAS  PubMed  Google Scholar 

  • Thyfault JP, Kraus RM, Hickner RC, Howell AW, Wolfe RR, Dohm GL (2004) Impaired plasma fatty acid oxidation in extremely obese women. Am J Phys 287:E1076–E1081

    CAS  Google Scholar 

  • Varnauskas E, Björntorp P, FahlĂ©n M, PĹ•erovskĂ˝ I, Stenberg J (1970) Effects of physical training on exercise blood flow and enzymatic activity in skeletal muscle. Cardiovasc Res 4:418–422

    Article  CAS  PubMed  Google Scholar 

  • Volk ME, Millington RH, Weinhouse S (1952) Oxidation of endogenous fatty acids of rat tissues in vitro. J Biol Chem 195:493–501

    Article  CAS  PubMed  Google Scholar 

  • von Helmoltz H (1845) Ăśber den Stoffverbrauch bei der Muskelaction. MĂĽller’s Arch Anat Physiol:72–83

    Google Scholar 

  • von Liebig J (1842) Chimie organique appliquĂ©e Ă  la physiologie animale et Ă  la pathologie. Chez Fortin, Masson et Cie, Paris

    Google Scholar 

  • von Pettenkofer M, Voit C (1866) Untersuchungen ĂĽber den Stoffwechselverbrauch des normalen Menschen. Z Biol 2:459–573

    Google Scholar 

  • Waclawik AJ, Lanska DJ (2019) Antecedents, development, adoption, and application of Duchenne’s trocar for histopathologic studies of neuromuscular disorders in the nineteenth century. J Hist Neurosci 28:176–194

    Article  PubMed  Google Scholar 

  • Wahren J, Felig P, Ahlborg G, Jorfeldt L (1971) Glucose metabolism during leg exercise in man. J Clin Invest 50:2715–2725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watt MJ, Heigenhauser GJF, Spriet LL (2002) Intramuscular triacylglycerol utilization in human skeletal muscle during exercise: is there a controversy? J Appl Physiol 93:1185–1195

    Article  CAS  PubMed  Google Scholar 

  • Weiss S (1871) Verbunden von Glycogen zu Muskelaktivität. Wien Acad Bericht 64:284–291

    Google Scholar 

  • Zierler K (1976) Fatty acids as substrates for heart and skeletal muscle. Circ Res 38:459–463

    Article  CAS  PubMed  Google Scholar 

  • Zuntz N, Hagermann 0 (1898) Untersuchungen ĂĽber den Stoffwechsel des Pferdes bei Ruhe und Arbeit. Paul Parey, Berlin

    Google Scholar 

  • Zuntz VN (1911) Umsatz der nahrstoffe. XI. Betrachtungen uber die beziehungen zwischen nahrstoffen und leistungen des korpers. In: Oppenheimer K (ed) Handbuch der Biochemie des Menschen und der Tierre. Fischer, Jena FRG, pp 826–855

    Google Scholar 

  • Zuntz N, Schumberg WAEF (1901) Studien zu einer Physiologie des Marsches. Hirschwald, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew R. Coggan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coggan, A.R., Costill, D.L. (2022). A Brief History of Exercise Metabolism. In: McConell, G. (eds) Exercise Metabolism. Physiology in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-94305-9_1

Download citation

Publish with us

Policies and ethics