Innovation policies can be categorized as either a collection of support activities or various attempts to constructively deal with resistance and remove barriers. Traditionally, as briefly touched upon in the introduction, innovation policy has largely been a matter of various forms of R&D-related supporting activities (i.e., the first generation of innovation policy).
As stated in previous theory section on system transformation, there is an obvious risk that the policymaking process ends up captivate to the regime rather than supporting the emergence of radical innovation in a certain niche. In light of this, some scholars have argued that the political economy of innovation policy tends to generate an overemphasis on supporting activities and that insufficient attention is devoted to handling resistance from vested interest groups (Potts et al., 2016; Sandström et al., 2019). In other words, there is an apparent risk that policy measures intended to promote change and renewal instead end up supporting the continuation of an established regime. Looking into some of the most developed policies we have been able to identify, from different countries often recognized as forerunners in modern innovation policy, it is however not always obvious to what extent these policies actually differ from the traditional linear policies in their actual activities and outcomes. The remainder of this chapter addresses this problem.
In this section, we provide empirical illustrations of innovation policies aiming at system transformation across Western economies. We start with the Strategic Innovation Programs (SIP) in Sweden, continue with the SHOK programs in Finland, move on to the Top Sectors in the Netherlands, further toward the Austrian competence centers, and end with some illustrations from Canada.
4.1 The Strategic Innovation Programs (SIP) in Sweden
The Swedish Strategic innovation programs (SIP) are stated to be designed to create conditions for sustainable solutions to global challenges and to increase competitiveness in areas of high relevance to the Swedish economy. The program activities should be characterized by openness and transparency and implemented in public-private collaboration whereby problem formulation and program management are delegated to the program actors, while public agencies are responsible for the formal exercise of authority. Thus, the SIP programs appear as state-of-the-art examples of the third generation of innovation policy. The programs’ main activities consist of research and innovation projects (R&D projects) that are carried out in collaboration with a multitude of actors. The programs also carry out complementary activities to take a holistic approach to innovation in the targeted areas. The programs are offered public funding for up to 12 years, divided into four stages with intermediate evaluations. Seventeen strategic innovation programs have been granted funding in four rounds. Six programs were evaluated in 2020. These are presented in Table 1.
Table 1 Strategic Innovation Programs (evaluated in 2020) The Swedish Innovation Agency (Vinnova) estimates that the total budget for all the SIP programs (over 12 years) will amount to approximately 16 billion Swedish Krona (SEK) (approximately US$1.9 billion). Of this, an estimated 5.9 billion SEK consists of public funding through the SIP instrument and an additional 1.3 billion SEK through collaboration programs. Additional funding is expected to come from the private sector and other societal actors. Figure 1 shows how public funding has been allocated among different types of actors.
Universities and large institutes have received most public funding. Small- and medium-sized enterprises (SMEs) participate to a high degree in the programs Swelife and SIO Grafen, and to a relatively large extent also in the programs IoT Sweden, SES, and BioInnovation, while SME participation in Innovair is small. It is also noticeable that large companies receive relatively large volume of public funding.
Column A in Table 2 shows the 20 largest recipients of public funding in projects between 2014 and 2019, including coordination funds and by distribution of funding within individual recipient of public funding, followed by Chalmers University of Technology (CTH), LU, Linköping University (LIU), and the Royal Institute of Technology (KTH). GKN Aerospace (GKN) and Saab have received significant public funding, although most of this funding has been earmarked for specific demonstration projects. When we exclude funding for coordination of the different programs, there is little differences in the top 20 funding receivers, as shown in column B in Table 2. RISE remains the largest recipient of public funding and Chalmers University of Technology remains the second largest receiver.
Table 2 Largest recipients of public funding in Swedish Strategic Innovation Programs As this analysis shows, when looking into the details of how funds are distributed and which activities are actually carried out, SIP appears somewhat detached from what theory says about the third generation of innovation policy in support of system transformation. Money is primarily transferred to larger organizations such as universities and large industrial firms. As these actors can be considered part of the established socio-technical regime, who are also collaborating with each other, we would expect these efforts to strengthen the current socio-technical regime rather than niche experiments.
4.2 Strategic Centers for Science, Technology, and Innovation (SHOK) in Finland
In 2008, the Strategic Centers for Science, Technology, and Innovation (SHOK) were launched in Finland. The initiative was financed by The Finnish Funding Agency for Technology and Innovation, TEKES. During the period 2008–2012, TEKES spent €343 million on the program, approximately 40% of the total funding for the program.
The Finnish concept was established around 2006 as a type of partnership between the public and private sectors. The stated purpose was to increase the pace of innovation and renew the Finnish business community by developing new skills and generating system-changing, radical innovations. This aim was, in turn, based on a report on Finland’s competitiveness, which sought to explore how the Finnish economy could cope in a world characterized by increasing transformational pressure. Finland is a small and open economy, so the report advocated a need to niche and prioritize resources toward more knowledge-intensive industries. It also stated that there was a need to improve the commercialization of research and development. More cross-border cooperation, more venture capital, and new platforms would, in theory, lead to enhanced competitiveness. The predecessor to SHOK was the initiatives launched in Finland in the wake of the deep crisis in the early 1990s.
Once SHOK was initiated, its stated goal was to create research and clusters in Finland that are internationally competitive. The aim was that key actors in the innovation system were to dedicate their activities to stipulated goals, and that collaboration would increase at the regional level and at the same time attract human capital to Finland. The centers are declared to be founded to make a difference. The policy documents emphasize that resources need to be concentrated and focused on application in order to give Finland a comparative advantage in the targeted areas.
In the evaluation of SHOK, it is shown that SHOK has a natural focus on large companies, which is partly at the expense of smaller companies. Furthermore, large companies have had limited incentives to engage in research that goes beyond current operations. In addition to this, they have relatively great autonomy. It is also clear that the international elements have been limited. Thus, SHOK also seems to have suffered from a lack of attention to the potential of emerging niche experiments and the inherent tendency to conserve and strengthen existing regimes.
4.3 Top Sectors in the Netherlands
The Top Sectors initiative in the Netherlands’ aims to strengthen cooperation between academia and the private sector in a total of nine sectors. Innovation policy in the Netherlands changed around 2012. Targeted subsidies and innovation support were removed and instead focus on different sectors of the economy that would collaborate more with universities to become more innovative: agriculture and food, chemical industry, creative industries, high-tech materials, raw materials, life science and health, logistics, and water. Government, private sector, universities, and research centers work together in the Top Sector Alliance for Knowledge and Innovation (TKI) to make top sectors even stronger. The alliance looks for ways to get innovative products or services to the market.
One purpose of the top sector programs has been to combine academic and industrial research. Previously, large companies engaged in in-house research and did not work much with universities. At universities, there was a bias toward researching what was scientifically interesting but perhaps of limited interest to industry. A further aim has been to reduce the fragmentation of public support functions for innovation. A more holistic view of innovation has thus been the goal.
The setup can thus be seen as a form of self-organizing public-private partnership (PPP). In order to receive a grant, a university and a company must enter into a contract that shows that they will cooperate for a longer time period. The grant corresponds to 30% of the funds the company uses to support the university. Each top sector has a steering group with representatives from industry, academia, and the state. These consortiums arrange various activities linked to innovation, internationalization, and skills development (Technopolis., 2019).
The idea of the top sector programs is that the whole process begins with research. This is emphasized by Paul Merkus, innovation partnership manager at the University of Technology in Eindhoven: “The process starts out with pure science, the exploration of theories. After that, professors and engineers will look at whether or not an idea is feasible in practice. In the end, companies will market it” (Eindhoven University of Technology, 2019).
An evaluation carried out in 2017 pointed out that the top sector programs had reduced fragmentation and shifted the focus to collaborations rather than subsidies. One could also see some positive competence development and that the universities’ research was linked more closely to the needs of the business community. However, the programs had not led to radical innovation, mainly because they were so focused on already established actors and technologies (Dialogic, 2017).
4.4 Competence Centers for Excellent Technologies in Austria
At first glance, the competence programs do not appear to be related to SIP, SHOK, or similar initiatives. However, there are some similarities. These programs were launched in the 1990s to increase the elements of research and development in industry by trying to combine academic research and private-sector R&D. The programs ran over a ten-year period, 1999–2009; the resources were distributed across sectors and with clear requirements for co-financing from industry. The purpose was to stimulate academic scientists and industrial researchers and developers to work together on strategic and translational research projects, closer to industry than university groups would typically work, however concentrating on prototype research and not on products ready for the market.
In 2006, the programs were restructured and came to be known as COMET (Competence Centers for Excellent Technologies) and they were placed under the authority of the Austrian Research Promotion Agency. At that time, there were 18 active competence centers with a total of 270 partners in academia and 150 in industry. In 2012, there were 40 active centers with a total of 1500 researchers involved. The programs were divided into three categories based on budget and scope. K2 is the largest in scope and runs over 10 years, while K1 runs for 7 years and K projects receive funding for 3–5 years with the aim of potentially becoming a larger project in the future. Overall, the research within the COMET programs is applied in nature. Since the start in 2008, a total of 22 centers have been formed; in 2017, there were a total of more than 1600 employees and a total budget of more than €100 million.
According to the OECD, COMET has been successful in the sense that new skills have been developed. At the same time, it is noted that few new approaches to achieving innovation have been applied. The projects that aimed to create new working methods for innovation have often received limited resources and later been reduced in scope. “International comparisons suggest the success of the industry-led, co-operative research competence center model and its contribution to R&D, innovation skills and cluster growth. But effectively supporting scale-up businesses may require a different—more risk-tolerant—governance approach and a more entrepreneurial attitude towards center development” (OECD, 2018, p. 115).
4.5 Networks of Centers of Excellence (NCE) in Canada
This initiative can be traced back to the late 1980s and has had similar ambition to the competence programs in Austria. NCE programs aim to meet Canada’s needs to focus on a critical mass of research resources on social and economic challenges, commercialize and apply more of its homegrown research breakthroughs, increase private-sector R&D, and train highly qualified people. As economic and social needs change, programs have evolved to address new challenges. The programs support large-scale academic research networks.
There is a clear multidisciplinary approach through which natural sciences, engineering, social sciences, and health sciences meet. In total, the resources invested by industry, academia, and the state amount to about $90 million per year. To acquire skills in specific areas also seems to be an important task. Today, the initiative has developed into a number of national programs: Networks of Centers of Excellence, Centers of Excellence for Commercialization of Research, and Business-Led Networks of Centers of Excellence. Some investments focus more on creating knowledge and others on research or commercialization. The programs runs for anywhere from 4 years to more than 10 years and budgets vary between $1 million and up to $146 million (Government of Canada, 2021).