Skip to main content

Classification Accuracy of Three-Channel Images Compressed by Discrete Atomic Transform

  • 329 Accesses

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 367)

Abstract

Acquired images often have a large size while there can be limitations on communication line capacity and/or storage memory. Then, there is a need to compressed them. If lossy compression is applied, compressed images should have quality enough high for solving the tasks of their further processing as segmentation, classification, object detection. Here, we consider the influence of lossy compression on classification accuracy of three-channel remote sensing images. A specific feature of our analysis is that discrete atomic transform is studied as the basis of lossy compression and maximum likelihood method is applied at classification stage. It is shown that classification accuracy depends on both compression degree that can be characterized in different ways and image complexity. Under certain conditions, classification accuracy remains practically the same as in case of classifying an original (uncompressed) image. Then, it starts to worsen. We show how to provide quite large compression ratio with avoiding sufficient degradation of classification accuracy.

Keywords

  • Image lossy compression
  • Discrete atomic transform
  • Classification accuracy
  • Parameter adaptation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-94259-5_22
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-94259-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Pillai, D.K.: New computational models for image remote sensing and big data. In: Big Data Analytics for Satellite Image Processing and Remote Sensing, pp. 1–21. IGI Global (2018)

    Google Scholar 

  2. Taubman, D., Marcellin, M.: Standards and Practice JPEG 2000: Image Compression Fundamentals. Kluwer, Boston (2002)

    CrossRef  Google Scholar 

  3. Kussul, N., Mykola, L., Shelestov, A., Skakun, S.: Crop inventory at regional scale in Ukraine: developing in season and end of season crop maps with multi-temporal optical and SAR satellite imagery. Eur. J. Remote Sens. 51(1), 627–636 (2018)

    CrossRef  Google Scholar 

  4. Kussul, N., Lavreniuk, M., Kolotii, A., Skakun, S., Rakoid, O., Shumilo, L.: A workflow for Sustainable Development Goals indicators assessment based on high-resolution satellite data. Int. J. Dig. Earth 13(2), 309–321 (2020)

    CrossRef  Google Scholar 

  5. Salomon, D., Motta, G., Bryant, D.: Handbook of Data Compression. Springer-Verlag, London (2010)

    CrossRef  Google Scholar 

  6. Sayood, K.: Introduction to data compression. Morgan Kaufman, Burlington (2017)

    Google Scholar 

  7. Blanes, I., Magli, E., Serra-Sagrista, J.: A tutorial on image compression for optical space imaging systems. IEEE Geosci. Remote Sens. Mag. 2(3), 8–26 (2014)

    CrossRef  Google Scholar 

  8. Lukin, V., Brysina, I., Makarichev, V.: Discrete atomic compression of digital images: a way to reduce memory expenses. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds.) Integrated Computer Technologies in Mechanical Engineering. AISC, vol. 1113, pp. 492–502. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37618-5_42

    CrossRef  Google Scholar 

  9. Makarichev, V., Lukin, V., Brysina, I., Vozel, B., Chehdi, K.: Atomic wavelets in lossy and near-lossless image compression. In: Proceedings of SPIE 11533, Image and Signal Processing for Remote Sensing XXVI, vol. 11533, pp. 1–12 (2020)

    Google Scholar 

  10. Zemliachenko, A., Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: Still image/video frame lossy compression providing a desired visual quality. Multidimension. Syst. Signal Process. 27, 697–718 (2015)

    CrossRef  Google Scholar 

  11. Aiazzi, B., Alparone, L., Baronti, S.: Near-lossless compression of 3-D optical data. IEEE Trans. Geosci. Remote Sens. 39(11), 2547–2557 (2001)

    CrossRef  Google Scholar 

  12. Brysina, I.V., Makarichev, V.A.: Atomic functions and their generalizations in data processing: function theory approach. Radioelectron. Comput. Syst. 87(3), 4–10 (2018)

    CrossRef  Google Scholar 

  13. Lukin, V., et al.: Lossy compression of multichannel remote sensing images with quality control. Remote Sens. 12(22), 3840 (2020)

    CrossRef  Google Scholar 

  14. Parresol, B.R.: Recovering parameters of Johnson's SB distribution. US Department of Agriculture, Forest Service, Southern Research Station (2003)

    Google Scholar 

  15. Shelestov, A., et al.: Cloud approach to automated crop classification using Sentinel-1 imagery. IEEE Trans. Big Data 6(3), 572–582 (2020)

    CrossRef  Google Scholar 

  16. Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A.: Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 14(5), 778–782 (2017)

    CrossRef  Google Scholar 

  17. Zabala, A., Pons, X.: Impact of lossy compression on mapping crop areas from remote sensing. Int. J. Remote Sens. 34(8), 2796–2813 (2013)

    CrossRef  Google Scholar 

  18. Garcia-Sobrino, J., Laparra, V., Serra-Sagristà, J., Calbet, X., Camps-Valls, G.: Improved statistically based retrievals via spatial-spectral data compression for IASI data. IEEE Trans. Geosci. Remote Sens. 57(8), 5651–5668 (2019)

    CrossRef  Google Scholar 

  19. Lavreniuk, M., Shelestov, A., Kussul, N., Rubel, O., Lukin, V., Egiazarian, K.: Use of modified BM3D filter and CNN classifier for SAR data to improve crop classification accuracy. In 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), pp. 1–6 (2019)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding received from the National Research Foundation of Ukraine within the grant support 2020/01.0273 “Intelligent models and methods for determining land degradation indicators based on satellite data” and 2020.01/0268 "Information technology for fire danger assessment and fire monitoring in natural ecosystems based on satellite data" (NRFU competition "Science for the safety of human and society").

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Lukin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Makarichev, V., Vasilyeva, I., Lukin, V., Kussul, N., Shelestov, A. (2022). Classification Accuracy of Three-Channel Images Compressed by Discrete Atomic Transform. In: Nechyporuk, M., Pavlikov, V., Kritskiy, D. (eds) Integrated Computer Technologies in Mechanical Engineering - 2021. ICTM 2021. Lecture Notes in Networks and Systems, vol 367. Springer, Cham. https://doi.org/10.1007/978-3-030-94259-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94259-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94258-8

  • Online ISBN: 978-3-030-94259-5

  • eBook Packages: EngineeringEngineering (R0)