Skip to main content

Genetic Aspects of Hypospadias

  • Chapter
  • First Online:
Hypospadias Surgery
  • 1261 Accesses

Abstract

In this chapter, I give an overview of the current knowledge on genes involved in the etiology of hypospadias. I begin with a short description of genes involved in the embryology of the male external genitalia and focus the remainder of this chapter on the evidence for genes relevant to the etiology of hypospadias. I used the review article that we published in 2012 as basis, updated it with new information, and subsequently summarized the main facts in order not to be too detailed. I focus on the etiology of isolated hypospadias in humans. Therefore, I do not review animal studies or syndromic forms of hypospadias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMH:

Anti-Müllerian hormone

AR:

Androgen receptor

ATF3:

Activating transcription factor 3

BMP:

Bone morphogenetic proteins

CAH:

Congenital adrenal hyperplasia

CAIS:

Complete androgen insensitivity syndromes

DGKK:

DiacylGlycerol kinase κ

DHT:

DiHydroTestosterone

DSD:

Disorder of sex development

ESR:

EStrogen receptors

FGF:

Fibroblast growth factor proteins

GT:

Genital tubercle

hCG:

Human chorionic gonadotropin

MAMLD1:

MAstermind-like domain containing 1

PAIS:

Partial androgen insensitivity syndromes

Sf1:

Splicing factor 1

SHH:

Sonic HedgeHog

SRD5A:

Steroid-5-alpha-reductase

SRY:

Sex-determining region Y gene

Wt1:

Wilms tumor 1

References

  1. Schoenwolf GC, Bleyl SB, Brauwer PR, Francis-West PH. Larsen’s human embryology. 4th ed. Philadelphia, PA: Churchill Livingstone; 2009.

    Google Scholar 

  2. Wilhelm D, Englert C. The Wilms tumor suppressor WT1 regulates early gonad development by activation of Sf1. Genes Dev. 2002; https://doi.org/10.1101/gad.220102.

  3. Luo X, Ikeda Y, Parker KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell. 1994; https://doi.org/10.1016/0092-8674(94)90211-9.

  4. Perriton CL, Powles N, Chiang C, Maconochie MK, Cohn MJ. Sonic hedgehog signaling from the urethral epithelium controls external genital development. Dev Biol. 2002; https://doi.org/10.1006/dbio.2002.0668.

  5. Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 1999;126

    Google Scholar 

  6. Morgan EA, Nguyen SB, Scott V, Stadler HS. Loss of Bmp7 and Fgf8 signaling in Hoxa 13-mutant mice causes hypospadia. Development. 2003; https://doi.org/10.1242/dev.00530.

  7. Suzuki K, Bachiller D, Chen YPP, et al. Regulation of outgrowth and apoptosis for the terminal appendage: external genitalia: development by concerted actions of BMP signaling. Development. 2003; https://doi.org/10.1242/dev.00846.

  8. Haraguchi R, Mo R, Hui CC, Motoyama J, Makino S, Shiroishi T, Gaffield W, Yamada G. Unique functions of sonic hedgehog signaling during external genitalia development. Development. 2001;128

    Google Scholar 

  9. Shehata BM, Elmore JM, Bootwala Y, et al. Immunohistochemical characterization of sonic hedgehog and its downstream signaling molecules during human penile development. Fetal Pediatr Pathol. 2011; https://doi.org/10.3109/15513815.2011.555809.

  10. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990; https://doi.org/10.1038/346240a0.

  11. Misrahi M, Beau I, Meduri G, Bouvattier C, Atger M, Loosfelt H, Ghinea N, Hai MV, Bougneres PF, Milgrom E. Gonadotropin receptors and the control of gonadal steroidogenesis: physiology and pathology. Bailliere Clin Endocrinol Metab. 1998; https://doi.org/10.1016/S0950-351X(98)80444-8.

  12. van der Zanden LFM, van Rooij IALM, Feitz WFJ, Franke B, Knoers NVAM, Roeleveld N. Aetiology of hypospadias: a systematic review of genes and environment. Hum Reprod Update. 2012; https://doi.org/10.1093/humupd/dms002.

  13. Scott HM, Mason JI, Sharpe RM. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr Rev. 2009; https://doi.org/10.1210/er.2009-0016.

  14. Crescioli C, Maggi M, Vannelli GB, Ferruzzi P, Granchi S, Mancina R, Muratori M, Forti G, Serio M, Luconi M. Expression of functional estrogen receptors in human fetal male external genitalia. J Clin Endocrinol Metab. 2003; https://doi.org/10.1210/jc.2002-021085.

  15. Wang Y, Li Q, Xu J, Liu Q, Wang W, Lin Y, Ma F, Chen T, Li S, Shen Y. Mutation analysis of five candidate genes in Chinese patients with hypospadias. Eur J Hum Genet. 2004; https://doi.org/10.1038/sj.ejhg.5201232.

  16. Diposarosa R, Pamungkas KO, Sribudiani Y, Herman H, Suciati LP, Rahayu NS, Effendy SH. Description of mutation spectrum and polymorphism of Wilms’ tumor 1 (WT1) gene in hypospadias patients in the Indonesian population. J Pediatr Urol. 2018; https://doi.org/10.1016/j.jpurol.2017.11.021.

  17. Carmichael SL, Ma C, Choudhry S, Lammer EJ, Witte JS, Shaw GM. Hypospadias and genes related to genital tubercle and early urethral development. J Urol. 2013; https://doi.org/10.1016/j.juro.2013.05.061.

  18. Nordenskjöld A, Friedman E, Tapper-Persson M, Söderhäll C, Leviav A, Svensson J, Anvret M. Screening for mutations in candidate genes for hypospadias. Urol Res. 1999; https://doi.org/10.1007/s002400050088.

  19. Kon M, Suzuki E, Dung VC, et al. Molecular basis of non-syndromic hypospadias: systematic mutation screening and genome-wide copy-number analysis of 62 patients. Hum Reprod. 2015; https://doi.org/10.1093/humrep/deu364.

  20. Zhang W, Shi J, Zhang C, Jiang X, Wang J, Wang W, et al. Identification of gene variants in 130 Han Chinese patients with hypospadias by targeted next-generation sequencing. Mol Genet Genomic Med. 2019;7:e827.

    PubMed  PubMed Central  Google Scholar 

  21. Utsch B, Kaya A, Özburun A, Lentze MJ, Albers N, Ludwig M. Exclusion of WTAP and HOXA13 as candidate genes for isolated hypospadias. Scand J Urol Nephrol. 2003; https://doi.org/10.1080/00365590310014517.

  22. Beleza-Meireles A, Lundberg F, Lagerstedt K, Zhou X, Omrani D, Frisén L, Nordenskjöld A. FGFR2, FGF8, FGF10 and BMP7 as candidate genes for hypospadias. Eur J Hum Genet. 2007; https://doi.org/10.1038/sj.ejhg.5201777.

  23. Chen T, Li Q, Xu J, Ding K, Wang Y, Wang W, Li S, Shen Y. Mutation screening of BMP4, BMP7, HOXA4 and HOXB6 genes in Chinese patients with hypospadias. Eur J Hum Genet. 2007; https://doi.org/10.1038/sj.ejhg.5201722.

  24. Bouty A, Walton K, Listyasari NA, Robevska G, Van den Bergen J, Santosa A, et al. Functional characterization of two new variants in the Bone Morphogenetic Protein 7 Prodomain in two pairs of monozygotic twins with hypospadias. J Endocr Soc. 2019;3:814–24.

    Article  CAS  Google Scholar 

  25. Geller F, Feenstra B, Carstensen L, et al. Genome-wide association analyses identify variants in developmental genes associated with hypospadias. Nat Genet. 2014; https://doi.org/10.1038/ng.3063.

  26. Kojima Y, Koguchi T, Mizuno K, Sato Y, Hoshi S, Hata J, et al. Single Nucleotide Polymorphisms of HAAO and IRX6 Genes as Risk Factors for Hypospadias. J Urol. 2019;201:386–92.

    Article  Google Scholar 

  27. Chen Z, Lin X, Lei Y, Chen H, Finnell RH, Wang Y, ET AL. Genome-wide association study in Chinese cohort identifies one novel hypospadias risk associated locus at 12q13.13. BMC Med Genomics. 2019;12:196.

    Google Scholar 

  28. Köhler B, Lin L, Mazen I, Cetindag C, Biebermann H, Akkurt I, Rossi R, Hiort O, Grüters A, Achermann JC. The spectrum of phenotypes associated with mutations in steroidogenic factor 1 (SF-1, NR5A1, Ad4BP) includes severe penoscrotal hypospadias in 46,XY males without adrenal insufficiency. Eur J Endocrinol. 2009; https://doi.org/10.1530/EJE-09-0067.

  29. Allali S, Muller JB, Brauner R, et al. Mutation analysis of nr5a1 encoding steroidogenic factor 1 in 77 patients with 46, XY disorders of sex development (DSD) including hypospadias. PLoS One. 2011; https://doi.org/10.1371/journal.pone.0024117.

  30. Adamovic T, Chen Y, Thai HTT, Zhang X, Markljung E, Zhao S, Nordenskjöld A. The p.G146A and p.P125P polymorphisms in the steroidogenic factor-1 (SF-1) gene do not affect the risk for hypospadias in caucasians. Sex Dev. 2012; https://doi.org/10.1159/000343782.

  31. Laan M, Kasak L, Timinskas K, Grigorova M, Venclovas Č, Renaux A, et al. NR5A1 c.991-1G > C splice-site variant causes familial 46,XY partial gonadal dysgenesis with incomplete penetrance. Clin Endocrinol (Oxf). 2020;in press.

    Google Scholar 

  32. Kalfa N, Fukami M, Philibert P, et al. Screening of mamld1 mutations in 70 children with 46,xy dsd: identification and functional analysis of two new mutations. PLoS One. 2012; https://doi.org/10.1371/journal.pone.0032505.

  33. Hiort O, Klauber G, Cendron M, Sinnecker GHG, Keim L, Schwinger E, Wolfe HJ, Yandell DW. Molecular characterization of the androgen receptor gene in boys with hypospadias. Eur J Pediatr. 1994; https://doi.org/10.1007/BF01956409.

  34. Alléra A, Herbst MA, Griffin JE, Wilson JD, Schweikert HU, McPhaul MJ. Mutations of the androgen receptor coding sequence are infrequent in patients with isolated hypospadias. J Clin Endocrinol Metab. 1995; https://doi.org/10.1210/jcem.80.9.7673412.

  35. Sutherland RW, Wiener JS, Hicks JP, Marcelli M, Gonzales ET, Roth DR, Lamb DJ. Androgen receptor gene mutations are rarely associated with isolated penile hypospadias. J Urol. 1996; https://doi.org/10.1016/s0022-5347(01)65830-0.

  36. Thai HTT, Kalbasi M, Lagerstedt K, Frisén L, Kockum I, Nordenskjöld A. The valine allele of the V89L polymorphism in the 5-α-reductase gene confers a reduced risk for hypospadias. J Clin Endocrinol Metab. 2005; https://doi.org/10.1210/jc.2005-0446.

  37. Borhani N, Novin MG, Manoochehri M, Rouzrokh M, Kazemi B, Koochaki A, Hosseini A, Farahani RM, Omrani MD. New single nucleotide variation in the promoter region of androgen receptor (AR) gene in hypospadic patients. Iran J Reprod Med. 2014;12:217.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yuan S, Meng L, Zhang Y, Tu C, Du J, Li W, Liang P, Lu G, Tan YQ. Genotype-phenotype correlation and identification of two novel SRD5A2 mutations in 33 Chinese patients with hypospadias. Steroids. 2017; https://doi.org/10.1016/j.steroids.2017.06.010.

  39. Chen Z, Lin X, Wang Y, Xie H, Chen F. Dysregulated expression of androgen metabolism genes and genetic analysis in hypospadias. Mol Genet Genomic Med. 2020;8:e1346.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lim HN, Chen H, McBride S, Dunning AM, Nixon RM, Hughes IA, Hawkins JR. Longer polyglutamine tracts in the androgen receptor are associated with moderate to severe undermasculinized genitalia in XY males. Hum Mol Genet. 2000; https://doi.org/10.1093/hmg/9.5.829.

  41. Aschim EL, Nordenskjöld A, Giwercman A, Lundin KB, Ruhayèl Y, Haugen TB, Grotmol T, Giwercman YL. Linkage between cryptorchidism, hypospadias, and GGN repeat length in the androgen receptor gene. J Clin Endocrinol Metab. 2004; https://doi.org/10.1210/jc.2004-0293.

  42. Radpour R, Rezaee M, Tavasoly A, Solati S, Saleki A. Association of long polyglycine tracts (GGN Repeats) in exon 1 of the androgen receptor gene with cryptorchidism and penile hypospadias in Iranian patients. J Androl. 2007; https://doi.org/10.2164/jandrol.106.000927.

  43. Parada-Bustamante A, Lardone MC, Madariaga M, Johnson MC, Codner E, Cassorla F, Castro A. Androgen receptor CAG and GGN polymorphisms in boys with isolated hypospadias. J Pediatr Endocrinol Metab. 2012; https://doi.org/10.1515/JPEM.2011.379.

  44. Adamovic T, Nordenskjöld A. The CAG repeat polymorphism in the Androgen receptor gene modifies the risk for hypospadias in Caucasians. BMC Med Genet. 2012; https://doi.org/10.1186/1471-2350-13-109.

  45. Adamovic T, Thai HTT, Liedén A, Nordenskjöld A. Association of a tagging single nucleotide polymorphism in the androgen receptor gene region with susceptibility to severe hypospadias in a Caucasian population. Sex Dev. 2013; https://doi.org/10.1159/000348882.

  46. Muroya K, Sasagawa I, Suzuki Y, Nakada T, Ishii T, Ogata T. Hypospadias and the androgen receptor gene: mutation screening and CAG repeat length analysis. Mol Hum Reprod. 2001; https://doi.org/10.1093/molehr/7.5.409.

  47. Vottero A, Minari R, Viani I, Tassi F, Bonatti F, Neri TM, Bertolini L, Bernasconi S, Ghizzoni L. Evidence for epigenetic abnormalities of the androgen receptor gene in foreskin from children with hypospadias. J Clin Endocrinol Metab. 2011; https://doi.org/10.1210/jc.2011-0511.

  48. Silva TS, Richeti F, Cunha DPPS, Amarante ACM, De Souza Leão JQ, Longui CA. Androgen receptor mRNA measured by quantitative real time PCR is decreased in the urethral mucosa of patients with middle idiopathic hypospadias. Horm Metab Res. 2013; https://doi.org/10.1055/s-0033-1333717.

  49. Beleza-Meireles A, Barbaro M, Wedell A, Töhönen V, Nordenskjöld A. Studies of a co-chaperone of the androgen receptor, FKBP52, as candidate for hypospadias. Reprod Biol Endocrinol. 2007; https://doi.org/10.1186/1477-7827-5-8.

  50. Kurahashi N, Sata F, Kasai S, Shibata T, Moriya K, Yamada H, Kakizaki H, Minakami H, Nonomura K, Kishi R. Maternal genetic polymorphisms in CYP1A1, GSTM1 and GSTT1 and the risk of hypospadias. Mol Hum Reprod. 2005; https://doi.org/10.1093/molehr/gah134.

  51. Carmichael SL, Witte JS, Ma C, Lammer EJ, Shaw GM. Hypospadias and variants in genes related to sex hormone biosynthesis and metabolism. Andrology. 2014; https://doi.org/10.1111/j.2047-2927.2013.00165.x.

  52. Mao Y, Zhang K, Ma L, Yun X, Ou F, Liu G, et al. Interaction between CYP1A1/CYP17A1 polymorphisms and parental risk factors in the risk of hypospadias in a Chinese population. Sci Rep. 2019;9:4123.

    Article  Google Scholar 

  53. Shekharyadav C, Bajpai M, Kumar V, Ahmed RS, Gupta P, Banerjee BD. Polymorphism in CYP1A1, GSTMI,GSTT1 genes and organochlorine pesticides in the etiology of hypospadias. Hum Exp Toxicol. 2011; https://doi.org/10.1177/0960327110392402.

  54. Qin XY, Kojima Y, Mizuno K, et al. Association of variants in genes involved in environmental chemical metabolism and risk of cryptorchidism and hypospadias. J Hum Genet. 2012; https://doi.org/10.1038/jhg.2012.48.

  55. Samtani R, Bajpai M, Vashisht K, Ghosh PK, Saraswathy KN. Hypospadias risk and polymorphism in SRD5A2 and CYP17 genes: case-control study among Indian children. J Urol. 2011; https://doi.org/10.1016/j.juro.2011.02.043.

  56. Yadav CS, Bajpai M, Kumar V, Datta SK, Gupta P, Ahmed RS, Banerjee BD. Polymorphisms in the P450 c17 (17-hydroxylase/17, 20-lyase) gene: association with estradiol and testosterone concentration in hypospadias. Urology. 2011; https://doi.org/10.1016/j.urology.2011.04.021.

  57. Codner E, Okuma C, Iñiguez G, Boric MA, Avila A, Johnson MC, Cassorla FG. Molecular study of the 3β-hydroxysteroid dehydrogenase gene type II in patients with hypospadias. J Clin Endocrinol Metab. 2004;89:957–64.

    Article  CAS  Google Scholar 

  58. Sata F, Kurahashi N, Ban S, et al. Genetic polymorphisms of 17β-hydroxysteroid dehydrogenase 3 and the risk of hypospadias. J Sex Med. 2010; https://doi.org/10.1111/j.1743-6109.2009.01641.x.

  59. Tria A, Hiort O, Sinnecker GHG. Steroid 5α-reductase 1 polymorphisms and testosterone/dihydrotestosterone ratio in male patients with hypospadias. Horm Res Paediatr. 2004;61:180–3.

    Article  CAS  Google Scholar 

  60. Silver RI, Russell DW. 5 alpha-reductase type 2 mutations are present in some boys with isolated hypospadias. J Urol. 1999; https://doi.org/10.1097/00005392-199909000-00064.

  61. Rahimi M, Ghanbari M, Fazeli Z, Rouzrokh M, Omrani S, Mirfakhraie R, Omrani MD. Association of SRD5A2 gene mutations with risk of hypospadias in the Iranian population. J Endocrinol Investig. 2017; https://doi.org/10.1007/s40618-016-0573-y.

  62. Samtani R, Bajpai M, Ghosh PK, Saraswathy KN. A49T, R227Q and TA repeat polymorphism of steroid 5 alpha-reductase type II gene and hypospadias risk in North Indian children. Meta Gene. 2015; https://doi.org/10.1016/j.mgene.2014.11.003.

  63. Van Der Zanden LFM, Van Rooij IALM, Feitz WFJ, Vermeulen SHHM, Kiemeney LALM, Knoers NVAM, Roeleveld N, Franke B. Genetics of hypospadias: Are single-nucleotide polymorphisms in SRD5A2, ESR1, ESR2, and ATF3 really associated with the malformation? J Clin Endocrinol Metab. 2010; https://doi.org/10.1210/jc.2009-2101.

  64. Watanabe M, Yoshida R, Ueoka K, Aoki K, Sasagawa I, Hasegawa T, Sueoka K, Kamatani N, Yoshimura Y, Ogata T. Haplotype analysis of the estrogen receptor 1 gene in male genital and reproductive abnormalities. Hum Reprod. 2007; https://doi.org/10.1093/humrep/del513.

  65. Tang KF, Zheng JZ, Xing JP. Molecular analysis of SNP12 in estrogen receptor α Gene in hypospadiac or cryptorchid patients from northwestern China. Urol Int. 2011; https://doi.org/10.1159/000330902.

  66. Choudhry S, Baskin LS, Lammer EJ, Witte JS, Dasgupta S, Ma C, Surampalli A, Shen J, Shaw GM, Carmichael SL. Genetic polymorphisms in ESR1 and ESR2 genes, and risk of hypospadias in a multiethnic study population. J Urol. 2015; https://doi.org/10.1016/j.juro.2014.11.087.

  67. Ban S, Sata F, Kurahashi N, Kasai S, Moriya K, Kakizaki H, Nonomura K, Kishi R. Genetic polymorphisms of ESR1 and ESR2 that may influence estrogen activity and the risk of hypospadias. Hum Reprod. 2008; https://doi.org/10.1093/humrep/den098.

  68. Nordenskjöld A, Beleza Meireles A, Omrani D, Kockum I, Frisén L, Lagerstedt K. Polymorphisms of estrogen receptor beta gene are associated with hypospadias. J Pediatr Urol. 2007; https://doi.org/10.1016/j.jpurol.2007.01.077.

  69. Beleza-Meireles A, Kockum I, Lundberg F, Söderhäll C, Nordenskjöld A. Risk factors for hypospadias in the estrogen receptor 2 gene. J Clin Endocrinol Metab. 2007; https://doi.org/10.1210/jc.2007-0543.

  70. Aschim EL, Giwercman A, Ståhl O, Eberhard J, Cwikiel M, Nordenskjöld A, Haugen TB, Grotmol T, Giwercman YL. The RsaI polymorphism in the estrogen receptor-beta gene is associated with male infertility. J Clin Endocrinol Metab. 2005;90:5343–8.

    Article  CAS  Google Scholar 

  71. Beleza-Meireles A, Töhönen V, Söderhäll C, Schwentner C, Radmayr C, Kockum I, Nordenskjöld A. Activating transcription factor 3: a hormone responsive gene in the etiology of hypospadias. Eur J Endocrinol. 2008; https://doi.org/10.1530/EJE-07-0793.

  72. Kalfa N, Liu B, Klein O, Wang MH, Cao M, Baskin LS. Genomic variants of ATF3 in patients with hypospadias. J Urol. 2008; https://doi.org/10.1016/j.juro.2008.07.066.

  73. Fukami M, Wada Y, Miyabayashi K, et al. CXorf6 is a causative gene for hypospadias. Nat Genet. 2006; https://doi.org/10.1038/ng1900.

  74. Kalfa N, Liu B, Ophir K, Audran F, Wang MH, Mei C, Sultan C, Baskin LS. Mutations of CXorf6 are associated with a range of severities of hypospadias. Eur J Endocrinol. 2008; https://doi.org/10.1530/EJE-08-0085.

  75. Chen Y, Thai HTT, Lundin J, Lagerstedt-Robinson K, Zhao S, Markljung E, Nordenskjöld A. Mutational study of the MAMLD1-gene in hypospadias. Eur J Med Genet. 2010; https://doi.org/10.1016/j.ejmg.2010.03.005.

  76. Igarashi M, Wada Y, Kojima Y, et al. Novel splice site mutation in MAMLD1 in a patient with hypospadias. Sex Dev. 2015; https://doi.org/10.1159/000380842.

  77. Ratan SK, Sharma A, Kapoor S, Polipalli SK, Dubey D, Mishra TK, Sinha SK, Agarwal SK. Polymorphism of 3′ UTR of MAMLD1 gene is also associated with increased risk of isolated hypospadias in Indian children: a preliminary report. Pediatr Surg Int. 2016; https://doi.org/10.1007/s00383-016-3856-7.

  78. Kalfa N, Cassorla F, Audran F, et al. Polymorphisms of MAMLD1 gene in hypospadias. J Pediatr Urol. 2011; https://doi.org/10.1016/j.jpurol.2011.09.005.

  79. Liu Y, Zhuang L, Ye W, Wu M, Huang Y. Association of MAMLD1 single-nucleotide polymorphisms with hypospadias in Chinese Han population. Front Biosci. 2017; https://doi.org/10.2741/4540.

  80. Van Der Zanden LFM, Van Rooij IALM, Feitz WFJ, et al. Common variants in DGKK are strongly associated with risk of hypospadias. Nat Genet. 2011; https://doi.org/10.1038/ng.721.

  81. Carmichael SL, Mohammed N, Ma C, Iovannisci D, Choudhry S, Baskin LS, Witte JS, Shaw GM, Lammer EJ. Diacylglycerol kinase K variants impact hypospadias in a California study population. J Urol. 2013; https://doi.org/10.1016/j.juro.2012.09.002.

  82. Ma Q, Tang Y, Lin H, et al. Diacylglycerol kinase κ (DGKK) variants and hypospadias in Han Chinese: association and meta-analysis. BJU Int. 2015;116:634–40.

    Article  CAS  Google Scholar 

  83. Hozyasz KK, Mostowska A, Kowal A, Mydlak D, Tsibulski A, Jagodziński PP. Further evidence of the association of the diacylglycerol kinase kappa (DGKK) gene with hypospadias. Urol J. 2018; https://doi.org/10.22037/uj.v0i0.4061.

  84. Xie H, Lin XL, Zhang S, Yu L, Li XX, Huang YC, Lyu YQ, Chen HT, Xu J, Chen F. Association between diacylglycerol kinase kappa variants and hypospadias susceptibility in a Han Chinese population. Asian J Androl. 2018; https://doi.org/10.4103/aja.aja_13_17.

  85. Richard MA, Sok P, Canon S, Brown AL, Peckham-Gregory EC, Nembhard WN, et al. The role of genetic variation in DGKK on moderate and severe hypospadias. Birth Defects Res. 2019;111:932–7.

    Article  CAS  Google Scholar 

  86. Han XR, Wen X, Wang S, et al. Associations of TGFBR1 and TGFBR2 gene polymorphisms with the risk of hypospadias: a case–control study in a Chinese population. Biosci Rep. 2017; https://doi.org/10.1042/BSR20170713.

  87. Bhoj EJ, Ramos P, Baker LA, et al. Human balanced translocation and mouse gene inactivation implicate Basonuclin 2 in distal urethral development. Eur J Hum Genet. 2011; https://doi.org/10.1038/ejhg.2010.245.

  88. Zhang X, Chen Y, Zhao S, Markljung E, Nordenskjöld A. Hypospadias associated with hypertelorism, the mildest phenotype of opitz syndrome. J Hum Genet. 2011; https://doi.org/10.1038/jhg.2011.17.

  89. El Houate B, Rouba H, Sibai H, et al. Novel mutations involving the INSL3 gene associated with cryptorchidism. J Urol. 2007; https://doi.org/10.1016/j.juro.2007.01.002.

  90. Söderhäll C, Körberg IB, Thai HTT, et al. Fine mapping analysis confirms and strengthens linkage of four chromosomal regions in familial hypospadias. Eur J Hum Genet. 2015; https://doi.org/10.1038/ejhg.2014.129.

  91. Mares L, Vilchis F, Chávez B, Ramos L. Molecular genetic analysis of AKR1C2-4 and HSD17B6 genes in subjects 46. XY with hypospadias. J Pediatr Urol. 2020;16:689.e1–689.e12.

    Article  CAS  Google Scholar 

  92. Zhang H, Zhang Z, Jia L, Ji W, Li H. Genetic polymorphism in the RYR1 C6487T is associated with severity of hypospadias in chinese han children. Biomed Res Int. 2018; https://doi.org/10.1155/2018/7397839.

  93. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, Vivian N, Goodfellow P, Lovell-Badge R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature. 1990; https://doi.org/10.1038/346245a0.

  94. Kim K, Liu W, Cunha GR, Russell DW, Huang H, Shapiro E, Baskin LS. Expression of the androgen receptor and 5α-reductase type 2 in the developing human fetal penis and urethra. Cell Tissue Res. 2002;307:145–53.

    Article  CAS  Google Scholar 

  95. Qiao L, Tasian GE, Zhang H, Cao M, Ferretti M, Cunha GR, Baskin LS. Androgen receptor is overexpressed in boys with severe hypospadias, and ZEB1 regulates androgen receptor expression in human foreskin cells. Pediatr Res. 2012; https://doi.org/10.1038/pr.2011.49.

  96. Pichler R, Djedovic G, Klocker H, Heidegger I, Strasak A, Loidl W, Bektic J, Skradski V, Horninger W, Oswald J. Quantitative measurement of the androgen receptor in prepuces of boys with and without hypospadias. BJU Int. 2013; https://doi.org/10.1111/j.1464-410X.2012.11731.x.

  97. Ohsako S, Aiba T, Miyado M, Fukami M, Ogata T, Hayashi Y, Mizuno K, Kojima Y. Expression of xenobiotic biomarkers CYP1 family in preputial tissue of patients with hypospadias and phimosis and its association with DNA methylation level of SRD5A2 minimal promoter. Arch Environ Contam Toxicol. 2018; https://doi.org/10.1007/s00244-017-0466-x.

  98. Balaji DR, Reddy G, Babu R, Paramaswamy B, Ramasundaram M, Agarwal P, et al. Androgen Receptor Expression in Hypospadias. J Indian Assoc Pediatr Surg. 2020;25:6–9.

    Article  Google Scholar 

  99. Schweikert HU, Schluter M, Romalo G. Intracellular and nuclear binding of [3H]dihydrotestosterone in cultured genital skin fibroblasts of patients with severe hypospadias. J Clin Invest. 1989; https://doi.org/10.1172/JCI113930.

  100. Gearhart JP, Linhard HR, Berkovitz GD, Jeffs RD, Brown TR. Androgen receptor levels and 5α-reductase activities in preputial skin and chordee tissue of boys with isolated hypospadias. J Urol. 1988; https://doi.org/10.1016/s0022-5347(17)42014-3.

  101. Terakawa T, Shima H, Yabumoto H, Koyama K, Ikoma F. Androgen receptor levels in patients with isolated hypospadias. Acta Endocrinol. 1990; https://doi.org/10.1530/acta.0.1230024.

  102. Bentvelsen FM, Brinkmann AO, van der Linden JETM, Schröder FH, Nijman JM. Decreased immunoreactive androgen receptor levels are not the cause of isolated hypospadias. Br J Urol. 1995; https://doi.org/10.1111/j.1464-410X.1995.tb07719.x.

  103. Tack LJW, Praet M, Van Dorpe J, Haid B, Buelens S, Hoebeke P, et al. Androgen receptor expression in preputial dartos tissue correlates with physiological androgen exposure in congenital malformations of the penis and in controls. J Pediatr Urol. 2020;16:43.e1–8.

    Article  CAS  Google Scholar 

  104. Liu B, Wang Z, Lin G, Agras K, Ebbers M, Willingham E, Baskin LS. Activating transcription factor 3 is up-regulated in patients with hypospadias. Pediatr Res. 2005; https://doi.org/10.1203/01.pdr.0000187796.28007.2d.

  105. Wang Z, Liu BC, Lin GT, Lin CS, Lue TF, Willingham E, Baskin LS. Up-regulation of estrogen responsive genes in hypospadias: microarray analysis. J Urol. 2007; https://doi.org/10.1016/j.juro.2007.01.014.

  106. Gurbuz C, Demir S, Zemheri E, Canat L, Kilic M, Caskurlu T. Is activating transcription factor 3 up-regulated in patients with hypospadias? Korean J Urol. 2010;51:561.

    Article  Google Scholar 

  107. Karabulut R, Turkyilmaz Z, Sonmez K, Kumas G, Ergun SG, Ergun MA, Basaklar AC. Twenty-four genes are upregulated in patients with hypospadias. Balk J Med Genet. 2013; https://doi.org/10.2478/bjmg-2013-0030.

  108. Fukami M, Wada Y, Okada M, Kato F, Katsumata N, Baba T, Morohashi KI, Laporte J, Kitagawa M, Ogata T. Mastermind-like domain-containing 1 (MAMLD1 or CXorf6) transactivates the Hes3 promoter, augments testosterone production, and contains the SF1 target sequence. J Biol Chem. 2008; https://doi.org/10.1074/jbc.M703289200.

  109. Ogata T, Sano S, Nagata E, Kato F, Fukami M. MAMLD1 and 46,XY disorders of sex development. Semin Reprod Med. 2012; https://doi.org/10.1055/s-0032-1324725.

  110. Shen J, Liu B, Sinclair A, Cunha G, Baskin LS, Choudhry S. Expression analysis of DGKK during external genitalia formation. J Urol. 2015; https://doi.org/10.1016/j.juro.2015.06.098.

  111. Houk CP, Lee PA. Approach to assigning gender in 46,XX congenital adrenal hyperplasia with male external genitalia: Replacing dogmatism with pragmatism. J Clin Endocrinol Metab. 2010; https://doi.org/10.1210/jc.2010-0714.

  112. Hughes IA. Disorders of sex development: a new definition and classification. Best Pract Res Clin Endocrinol Metab. 2008; https://doi.org/10.1016/j.beem.2007.11.001.

  113. Olesen IA, Sonne SB, Hoei-Hansen CE, Rajpert-DeMeyts E, Skakkebaek NE. Environment, testicular dysgenesis and carcinoma in situ testis. Best Pract Res Clin Endocrinol Metab. 2007; https://doi.org/10.1016/j.beem.2007.04.002.

  114. al-Attia HM. Male pseudohermaphroditism due to 5 alpha-reductase-2 deficiency in an Arab kindred. Postgrad Med J. 1997;73:802–7.

    Article  CAS  Google Scholar 

  115. Mazur T. Gender dysphoria and gender change in androgen insensitivity or micropenis. Arch Sex Behav. 2005; https://doi.org/10.1007/s10508-005-4341-x.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loes F. M. van der Zanden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Zanden, L.F.M. (2022). Genetic Aspects of Hypospadias. In: Hadidi, A.T. (eds) Hypospadias Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-94248-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94248-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94247-2

  • Online ISBN: 978-3-030-94248-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics