Skip to main content

Epidemiology of Hypospadias

  • Chapter
  • First Online:
Hypospadias Surgery

Abstract

In this chapter, we give a comprehensive review of the currently available literature on environmental factors involved in the etiology of hypospadias. We begin with a description about the prevalence of hypospadias, the clustering of hypospadias in families, the testicular dysgenesis syndrome, and the estrogen hypothesis. We focus the remainder of this chapter on the evidence for environmental factors that may be involved in the etiology of hypospadias and divided the chapter in several parts: exogenous exposure to estrogens, endogenous hormone levels, clinical factors, behavioral factors, occupational factors, and living environment. We summarized the results in a quick overview table. We used the review article that we published in 2012 as basis and updated it with new information and references. We focused on the etiology of isolated hypospadias in humans. Therefore, we did not systematically review animal studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body mass index

DES:

Diethylstilbestrol

EDCs:

Endocrine disrupting chemicals

hCG:

Human chorionic gonadotropin

ICSI:

IntraCytoplasmic sperm injection

IUGR:

IntraUterine growth restriction

IVF:

In vitro fertilization

TDS:

Testicular dysgenesis syndrome

References

  1. Chul Kim S, Kyoung Kwon S, Pyo Hong Y. Trends in the incidence of cryptorchidism and hypospadias of registry-based data in Korea: a comparison between industrialized areas of petrochemical estates and a non-industrialized area. Asian J Androl. 2011; https://doi.org/10.1038/aja.2010.53.

  2. Canon S, Mosley B, Chipollini J, Purifoy JA, Hobbs C. Epidemiological assessment of hypospadias by degree of severity. J Urol. 2012; https://doi.org/10.1016/j.juro.2012.08.007.

  3. Yu X, Nassar N, Mastroiacovo P, et al. Hypospadias prevalence and trends in international birth defect surveillance systems, 1980–2010. Eur Urol. 2019; https://doi.org/10.1016/j.eururo.2019.06.027.

  4. Gallentine ML, Morey AF, Thompson IM. Hypospadias: a contemporary epidemiologic assessment. Urology. 2001; https://doi.org/10.1016/s0090-4295(00)01105-5.

  5. Carmichael SL, Shaw GM, Nelson V, Selvin S, Torfs CP, Curry CJ. Hypospadias in California: trends and descriptive epidemiology. Epidemiology. 2003; https://doi.org/10.1097/01.ede.0000091603.43531.d0.

  6. Yang J, Carmichael SL, Kaidarova Z, Shaw GM. Risks of selected congenital malformations among offspring of mixed race-ethnicity. Birth Defects Res A Clin Mol Teratol. 2004; https://doi.org/10.1002/bdra.20054.

  7. Porter MP, Faizan MK, Grady RW, Mueller BA. Hypospadias in Washington State: maternal risk factors and prevalence trends. Pediatrics. 2005; https://doi.org/10.1542/peds.2004-1552.

  8. Nelson CP, Park JM, Wan J, Bloom DA, Dunn RL, Wei JT. The increasing incidence of congenital penile anomalies in the United States. J Urol. 2005; https://doi.org/10.1097/01.ju.0000179249.21944.7e.

  9. Meyer KJ, Reif JS, Rao Veeramachaneni DN, Luben TJ, Mosley BS, Nuckols JR. Agricultural pesticide use and hypospadias in Eastern Arkansas. Environ Health Perspect. 2006; https://doi.org/10.1289/ehp.9146.

  10. Forrester MB, Merz RD. Rates for specific birth defects among offspring of Japanese mothers, Hawaii, 1986-2002. Congenit Anom (Kyoto). 2006; https://doi.org/10.1111/j.1741-4520.2006.00106.x.

  11. Carmichael SL, Shaw GM, Laurent C, Olney RS, Lammer EJ. Maternal reproductive and demographic characteristics as risk factors for hypospadias. Paediatr Perinat Epidemiol. 2007; https://doi.org/10.1111/j.1365-3016.2007.00809.x.

  12. Elliott CS, Halpern MS, Paik J, Maldonado Y, Shortliffe LD. Epidemiologic trends in penile anomalies and hypospadias in the state of California, 1985-2006. J Pediatr Urol. 2011; https://doi.org/10.1016/j.jpurol.2011.03.006.

  13. Agopian AJ, Langlois PH, Ramakrishnan A, Canfield MA. Epidemiologic features of male genital malformations and subtypes in Texas. Am J Med Genet A. 2014; https://doi.org/10.1002/ajmg.a.36389.

  14. Gurney JK, Stanley J, Shaw C, Sarfati D. Ethnic patterns of hypospadias in New Zealand do not resemble those observed for cryptorchidism and testicular cancer: evidence of differential aetiology? Andrology. 2016; https://doi.org/10.1111/andr.12121.

  15. Kirby RS, Mai CT, Wingate MS, Janevic T, Copeland GE, Flood TJ, Isenburg J, Canfield MA. Prevalence of selected birth defects by maternal nativity status, United States, 1999–2007. Birth Defects Res. 2019; https://doi.org/10.1002/bdr2.1489.

  16. Nassar N, Abeywardana P, Barker A, Bower C. Parental occupational exposure to potential endocrine disrupting chemicals and risk of hypospadias in infants. Occup Environ Med. 2010;

    Google Scholar 

  17. Sun G, Tang D, Liang J, Wu M. Increasing prevalence of hypospadias associated with various perinatal risk factors in Chinese newborns. Urology. 2009; https://doi.org/10.1016/j.urology.2008.12.081.

  18. Jin L, Ye R, Zheng J, Hong S, Ren A. Secular trends of hypospadias prevalence and factors associated with it in Southeast China during 1993-2005. Birth Defects Res A Clin Mol Teratol. 2010; https://doi.org/10.1002/bdra.20673.

  19. Sun G, Xu ZM, Liang JF, Li L, Tang DX. Twelve-year prevalence of common neonatal congenital malformations in Zhejiang Province, China. World J Pediatr. 2011; https://doi.org/10.1007/s12519-011-0328-y.

  20. Li Y, Mao M, Dai L, et al. Time trends and geographic variations in the prevalence of hypospadias in China. Birth Defects Res A Clin Mol Teratol. 2012; https://doi.org/10.1002/bdra.22854.

  21. Ko JK, Lamichhane DK, Kim HC, Leem JH. Trends in the prevalences of selected birth defects in Korea (2008–2014). Int J Environ Res Public Health. 2018; https://doi.org/10.3390/ijerph15050923.

  22. Nassar N, Bower C, Barker A. Increasing prevalence of hypospadias in Western Australia, 1980-2000. Arch Dis Child. 2007; https://doi.org/10.1136/adc.2006.112862.

  23. Paulozzi LJ, Erickson JD, Jackson RJ. Hypospadias trends in two US surveillance systems. Pediatrics. 1997; https://doi.org/10.1542/peds.100.5.831.

  24. Chen MJ, Karaviti LP, Roth DR, Schlomer BJ. Birth prevalence of hypospadias and hypospadias risk factors in newborn males in the United States from 1997 to 2012. J Pediatr Urol. 2018; https://doi.org/10.1016/j.jpurol.2018.08.024.

  25. Fernández N, Pérez J, Monterrey P, Poletta FA, Bägli DJ, Lorenzo AJ, Zarante I. ECLAMC study: prevalence patterns of hypospadias in South America: multi-national analysis over a 24-year period. Int Braz J Urol. 2017; https://doi.org/10.1590/S1677-5538.IBJU.2016.0002.

  26. Lund L, Engebjerg MC, Pedersen L, Ehrenstein V, Nørgaard M, Sørensen HT. Prevalence of hypospadias in Danish boys: a longitudinal study, 1977-2005. Eur Urol. 2009; https://doi.org/10.1016/j.eururo.2009.01.005.

  27. Loane M, Dolk H, Kelly A, Teljeur C, Greenlees R, Densem J. Paper 4: EUROCAT statistical monitoring: identification and investigation of ten year trends of congenital anomalies in Europe. Birth Defects Res A Clin Mol Teratol. 2011; https://doi.org/10.1002/bdra.20778.

  28. Mavrogenis S, Czeizel AE. Trends in the prevalence of recorded isolated hypospadias in Hungarian newborn infants during the last 50 years - a population-based study. Reprod Toxicol. 2013; https://doi.org/10.1016/j.reprotox.2013.09.007.

  29. Nordenvall AS, Frisén L, Nordenström A, Lichtenstein P, Nordenskjöld A. Population based nationwide study of hypospadias in Sweden, 1973 to 2009: incidence and risk factors. J Urol. 2014; https://doi.org/10.1016/j.juro.2013.09.058.

  30. Schneuer FJ, Holland AJA, Pereira G, Bower C, Nassar N. Prevalence, repairs and complications of hypospadias: an Australian population-based study. Arch Dis Child. 2015; https://doi.org/10.1136/archdischild-2015-308809.

  31. Lane C, Boxall J, MacLellan D, Anderson PA, Dodds L, Romao RLP. A population-based study of prevalence trends and geospatial analysis of hypospadias and cryptorchidism compared with non-endocrine mediated congenital anomalies. J Pediatr Urol. 2017; https://doi.org/10.1016/j.jpurol.2017.02.007.

  32. Dave S, Liu K, Garg AX, Shariff SZ. Secular trends in the incidence and timing of surgical intervention for congenital undescended testis and surgically treated hypospadias in Ontario, Canada between 1997 and 2007. J Pediatr Urol. 2018; https://doi.org/10.1016/j.jpurol.2018.07.003.

  33. Fisch H, Golden RJ, Libersen GL, Hyun GS, Madsen P, New MI, Hensle TW. Maternal age as a risk factor for hypospadias. J Urol. 2001; https://doi.org/10.1016/S0022-5347(05)66578-0.

  34. Aho M, Koivisto AM, Tammela TLJ, Auvinen A. Is the incidence of hypospadias increasing? Analysis of Finnish hospital discharge data 1970-1994. Environ Health Perspect. 2000; https://doi.org/10.1289/ehp.00108463.

  35. Ahmed SF, Dobbie R, Finlayson AR, Gilbert J, Youngson G, Chalmers J, Stone D. Prevalence of hypospadias and other genital anomalies among singleton births, 1988-1997, in Scotland. Arch Dis Child Fetal Neonatal Ed. 2004; https://doi.org/10.1136/adc.2002.024034.

  36. Abdullah NA, Pearce MS, Parker L, Wilkinson JR, Jaffray B, McNally RJQ. Birth prevalence of cryptorchidism and hypospadias in northern England, 1993-2000. Arch Dis Child. 2007; https://doi.org/10.1136/adc.2006.102913.

  37. Bergman JEH, Loane M, Vrijheid M, et al. Epidemiology of hypospadias in Europe: a registry-based study. World J Urol. 2015; https://doi.org/10.1007/s00345-015-1507-6.

  38. Kurahashi N, Murakumo M, Kakizaki H, Nonomura K, Koyanagi T, Kasai S, Sata F, Kishi R. The estimated prevalence of hypospadias in Hokkaido, Japan. J Epidemiol. 2004; https://doi.org/10.2188/jea.14.73.

  39. Huang WY, Chen YF, Guo YJ, Lan CF, Chang HC, Chen SC, Huang KH. Epidemiology of hypospadias and treatment trends in Taiwan: a nationwide study. J Urol. 2011; https://doi.org/10.1016/j.juro.2010.11.053.

  40. Paulozzi LJ. International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect. 1999; https://doi.org/10.1289/ehp.99107297.

  41. Dolk H, Vrijheid M, Scott JES, et al. Toward the effective surveillance of hypospadias. Environ Health Perspect. 2004; https://doi.org/10.1289/ehp.6398.

  42. Springer A, van den Heijkant M, Baumann S. Worldwide prevalence of hypospadias. J Pediatr Urol. 2016; https://doi.org/10.1016/j.jpurol.2015.12.002.

  43. Latifoglu O, Yavuzer B, Demirciler N, Unal S, Atabay K. Extraurogenital congenital anomalies associated with hypospadias: retrospective review of 700 patients [3]. Ann Plast Surg. 1998; https://doi.org/10.1097/00000637-199811000-00022.

  44. Akre O, Lipworth L, Cnattingius S, Sparén P, Ekbom A. Risk factor patterns for cryptorchidism and hypospadias. Epidemiology. 1999; https://doi.org/10.1097/00001648-199907000-00005.

  45. Aschim EL, Haugen TB, Tretli S, Daltveit AK, Grotmol T. Risk factors for hypospadias in Norwegian boys - association with testicular dysgenesis syndrome? Int J Androl. 2004; https://doi.org/10.1111/j.1365-2605.2004.00473.x.

  46. Ludorf KL, Benjamin RH, Navarro Sanchez ML, et al. Patterns of co-occurring birth defects among infants with hypospadias. J Pediatr Urol. 2020; https://doi.org/10.1016/j.jpurol.2020.11.015.

  47. Wu WH, Chuang JH, Ting YC, Lee SY, Hsieh CS. Developmental anomalies and disabilities associated with hypospadias. J Urol. 2002; https://doi.org/10.1016/S0022-5347(05)64898-7.

  48. Weidner IS, Møller H, Jensen TK, SkakkebÆk NE. Risk factors for cryptorchidism and hypospadias. J Urol. 1999; https://doi.org/10.1016/S0022-5347(05)68992-6.

  49. Schnack TH, Poulsen G, Myrup C, Wohlfahrt J, Melbye M. Familial coaggregation of cryptorchidism and hypospadias. Epidemiology. 2010; https://doi.org/10.1097/EDE.0b013e3181c15a50.

  50. Akin Y, Ercan O, Telatar B, Tarhan F, Comert S. Hypospadias in Istanbul: incidence and risk factors. Pediatr Int. 2011; https://doi.org/10.1111/j.1442-200X.2011.03340.x.

  51. Albers N, Ulrichs C, Gluer S, Hiort O, Sinnecken GHG, Mildenberger H, Brodehl J. Etiologic classification of severe hypospadias: implications for prognosis and management. J Pediatr. 1997; https://doi.org/10.1016/s0022-3476(97)80063-7.

  52. Boehmer ALM, Nijman RJM, Lammers BAS, et al. Etiological studies of severe or familial hypospadias. J Urol. 2001; https://doi.org/10.1016/S0022-5347(05)66505-6.

  53. Fredell L, Kockum I, Hansson E, Holmner S, Lundquist L, Läckgren G, Pedersen J, Stenberg A, Westbacke G, Nordenskjöld A. Heredity of hypospadias and the significance of low birth weight. J Urol. 2002; https://doi.org/10.1016/S0022-5347(05)65334-7.

  54. Ollivier M, Paris F, Philibert P, et al. Family history is underestimated in children with isolated hypospadias: a French multicenter report of 88 families. J Urol. 2018; https://doi.org/10.1016/j.juro.2018.04.072.

  55. Brouwers MM, Van Der Zanden LFM, De Gier RPE, Barten EJ, Zielhuis GA, Feitz WFJ, Roeleveld N. Hypospadias: risk factor patterns and different phenotypes. BJU Int. 2010; https://doi.org/10.1111/j.1464-410X.2009.08772.x.

  56. Van Rooij IALM, Van Der Zanden LFM, Brouwers MM, Knoers NVAM, Feitz WFJ, Roeleveld N. Risk factors for different phenotypes of hypospadias: results from a Dutch case-control study. BJU Int. 2013; https://doi.org/10.1111/j.1464-410X.2012.11745.x.

  57. Woud SG, van Rooij IALM, van Gelder MMHJ, Olney RS, Carmichael SL, Roeleveld N, Reefhuis J (2014) Differences in risk factors for second and third degree hypospadias in the national birth defects prevention study. Birth Defects Res A Clin Mol Teratol. doi: https://doi.org/10.1002/bdra.23296.

  58. Calzolari E, Contiero MR, Roncarati E, Mattiuz PL, Volpato S. Aetiological factors in hypospadias. J Med Genet. 1986; https://doi.org/10.1136/jmg.23.4.333.

  59. Stoll C, Alembik Y, Roth MP, Dott B. Genetic and environmental factors in hypospadias. J Med Genet. 1990; https://doi.org/10.1136/jmg.27.9.559.

  60. Schnack TH, Zdravkovic S, Myrup C, Westergaard T, Christensen K, Wohlfahrt J, Melbye M. Familial aggregation of hypospadias: a cohort study. Am J Epidemiol. 2008; https://doi.org/10.1093/aje/kwm317.

  61. Fredell L, Iselius L, Collins A, et al. Complex segregation analysis of hypospadias. Hum Genet. 2002; https://doi.org/10.1007/s00439-002-0799-y.

  62. Skakkebæk NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001; https://doi.org/10.1093/humrep/16.5.972.

  63. Virtanen HE, Rajpert-De Meyts E, Main KM, Skakkebaek NE, Toppari J. Testicular dysgenesis syndrome and the development and occurrence of male reproductive disorders. Toxicol Appl Pharmacol. 2005; https://doi.org/10.1016/j.taap.2005.01.058.

  64. Akre O, Richiardi L. Does a testicular dysgenesis syndrome exist? Hum Reprod. 2009; https://doi.org/10.1093/humrep/dep174.

  65. Thorup J, McLachlan R, Cortes D, Nation TR, Balic A, Southwell BR, Hutson JM. What is new in cryptorchidism and hypospadias - a critical review on the testicular dysgenesis hypothesis. J Pediatr Surg. 2010; https://doi.org/10.1016/j.jpedsurg.2010.07.030.

  66. Schnack TH, Poulsen G, Myrup C, Wohlfahrt J, Melbye M. Familial coaggregation of cryptorchidism, hypospadias, and testicular germ cell cancer: a nationwide cohort study. J Natl Cancer Inst. 2010;

    Google Scholar 

  67. Jørgensen N, De Meyts ER, Main KM, Skakkebæk NE. Testicular dysgenesis syndrome comprises some but not all cases of hypospadias and impaired spermatogenesis. Int J Androl. 2010; https://doi.org/10.1111/j.1365-2605.2009.01050.x.

  68. Sharpe RM, Skakkebaek NE. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet. 1993; https://doi.org/10.1016/0140-6736(93)90953-E.

  69. Sharpe RM. The “oestrogen hypothesis” - where do we stand now? Int J Androl. 2003; https://doi.org/10.1046/j.1365-2605.2003.00367.x.

  70. Fisher JS. Environmental anti-androgens and male reproductive health: focus on phthalates and testicular dysgenesis syndrome. Reproduction. 2004; https://doi.org/10.1530/rep.1.00025.

  71. Sharpe RM, Skakkebaek NE. Testicular dysgenesis syndrome: mechanistic insights and potential new downstream effects. Fertil Steril. 2008; https://doi.org/10.1016/j.fertnstert.2007.12.026.

  72. Raman-Wilms L, Tseng AL, Wighardt S, Einarson TR, Koren G. Fetal genital effects of first-trimester sex hormone exposure: a meta-analysis. Obstet Gynecol. 1995; https://doi.org/10.1016/0029-7844(94)00341-A.

  73. Safe SH. Endocrine disruptors and human health - is there a problem? An update. Environ Health Perspect. 2000; https://doi.org/10.1289/ehp.00108487.

  74. Chia SE. Endocrine disruptors and male reproductive function - a short review. Int J Androl. 2000; https://doi.org/10.1046/j.1365-2605.2000.00015.x.

  75. Vidaeff AC, Sever LE. In utero exposure to environmental estrogens and male reproductive health: a systematic review of biological and epidemiologic evidence. Reprod Toxicol. 2005; https://doi.org/10.1016/j.reprotox.2004.12.015.

  76. Storgaard L, Bonde JP, Olsen J. Male reproductive disorders in humans and prenatal indicators of estrogen exposure: a review of published epidemiological studies. Reprod Toxicol. 2006; https://doi.org/10.1016/j.reprotox.2005.05.006.

  77. Martin OV, Shialis T, Lester JN, Scrimshaw MD, Boobis AR, Voulvoulis N. Testicular dysgenesis syndrome and the estrogen hypothesis: a quantitative meta-analysis. Environ Health Perspect. 2008; https://doi.org/10.1289/ehp.10545.

  78. Cook MB, Trabert B, Mcglynn KA. Organochlorine compounds and testicular dysgenesis syndrome: human data. Int J Androl. 2011; https://doi.org/10.1111/j.1365-2605.2011.01171.x.

  79. Carmichael SL, Shaw GM, Lammer EJ. Environmental and genetic contributors to hypospadias: a review of the epidemiologic evidence. Birth Defects Res A Clin Mol Teratol. 2012; https://doi.org/10.1002/bdra.23021.

  80. Botta S, Cunha GR, Baskin LS. Do endocrine disruptors cause hypospadias? Transl Androl Urol. 2014; https://doi.org/10.3978/j.issn.2223-4683.2014.11.03.

  81. Bonde JP, Flachs EM, Rimborg S, et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum Reprod Update. 2016; https://doi.org/10.1093/HUMUPD/DMW036.

  82. Morera AM, Valmalle AF, Asensio MJ, Chossegros L, Chauvin MA, Durand P, Mouriquand PDE. A study of risk factors for hypospadias in the Rhône-Alpes region (France). J Pediatr Urol. 2006; https://doi.org/10.1016/j.jpurol.2005.09.008.

  83. Wogelius P, Horváth-Puhó E, Pedersen L, Nørgaard M, Czeizel AE, Sørensen HT. Maternal use of oral contraceptives and risk of hypospadias - a population-based case-control study. Eur J Epidemiol. 2006; https://doi.org/10.1007/s10654-006-9067-0.

  84. Brouwers MM, Feitz WFJ, Roelofs LAJ, Kiemeney LALM, De Gier RPE, Roeleveld N. Risk factors for hypospadias. Eur J Pediatr. 2007; https://doi.org/10.1007/s00431-006-0304-z.

  85. Akre O, Boyd HA, Ahlgren M, Wilbrand K, Westergaard T, Hjalgrim H, Nordenskjöld A, Ekbom A, Melbye M. Maternal and gestational risk factors for hypospadias. Environ Health Perspect. 2008; https://doi.org/10.1289/ehp.10791.

  86. Nørgaard M, Wogelius P, Pedersen L, Rothman KJ, Sørensen HT. Maternal use of oral contraceptives during early pregnancy and risk of hypospadias in male offspring. Urology. 2009; https://doi.org/10.1016/j.urology.2009.04.034.

  87. Lind JN, Tinker SC, Broussard CS, Reefhuis J, Carmichael SL, Honein MA, Olney RS, Parker SE, Werler MM. Maternal medication and herbal use and risk for hypospadias: data from the National Birth Defects Prevention Study, 1997-2007. Pharmacoepidemiol Drug Saf. 2013; https://doi.org/10.1002/pds.3448.

  88. Buur LE, Laurberg VR, Ernst A, Arendt LH, Nybo Andersen AM, Olsen J, Ramlau-Hansen CH. Oral contraceptive use and genital anomalies in sons. A Danish cohort study. Reprod Toxicol. 2019; https://doi.org/10.1016/j.reprotox.2019.07.004.

  89. Heisey AS, Bell EM, Herdt-Losavio ML, Druschel C. Surveillance of congenital malformations in infants conceived through assisted reproductive technology or other fertility treatments. Birth Defects Res A Clin Mol Teratol. 2015; https://doi.org/10.1002/bdra.23355.

  90. Liberman RF, Getz KD, Heinke D, Luke B, Stern JE, Declercq ER, Chen X, Lin AE, Anderka M. Assisted reproductive technology and birth defects: effects of subfertility and multiple births. Birth Defects Res. 2017; https://doi.org/10.1002/bdr2.1055.

  91. Arendt LH, Lindhard MS, Kjersgaard C, Henriksen TB, Olsen J, Ramlau-Hansen CH. Parental subfertility and hypospadias and cryptorchidism in boys: results from two Danish birth cohorts. Fertil Steril. 2018; https://doi.org/10.1016/j.fertnstert.2018.06.010.

  92. Shechter-Maor G, Czuzoj-Shulman N, Spence AR, Abenhaim HA. The effect of assisted reproductive technology on the incidence of birth defects among livebirths. Arch Gynecol Obstet. 2018; https://doi.org/10.1007/s00404-018-4694-8.

  93. Carmichael SL, Shaw GM, Laurent C, Croughan MS, Olney RS, Lammer EJ. Maternal progestin intake and risk of hypospadias. Arch Pediatr Adolesc Med. 2005; https://doi.org/10.1001/archpedi.159.10.957.

  94. Källén B, Olausson PO, Nygren KG. Neonatal outcome in pregnancies from ovarian stimulation. Obstet Gynecol. 2002; https://doi.org/10.1016/S0029-7844(02)02069-0.

  95. Sørensen HT, Pedersen L, Skriver MV, Nørgaard M, Nørgård B, Hatch EE. Use of clomifene during early pregnancy and risk of hypospadias: Population based case-control study. Br Med J. 2005; https://doi.org/10.1136/bmj.38326.606979.79.

  96. Meijer WM, De Jong-Van Den Berg LTW, Van Den Berg MD, Verheij JBGM, De Walle HEK. Clomiphene and hypospadias on a detailed level: signal or chance? Birth Defects Res A Clin Mol Teratol. 2006; https://doi.org/10.1002/bdra.20243.

  97. Wennerholm UB, Bergh C, Hamberger L, Lundin K, Nlisson L, Wikland M, Källén B. Incidence of congenital malformations in children born after ICSI. Hum Reprod. 2000; https://doi.org/10.1093/humrep/15.4.944.

  98. Ericson A, Källén B. Congenital malformations in infants born after IVF: a population-based study. Hum Reprod. 2001; https://doi.org/10.1093/humrep/16.3.504.

  99. Pinborg A, Loft A, Andersen AN. Neonatal outcome in a Danish national cohort of 8602 children born after in vitro fertilization or intracytoplasmic sperm injection: the role of twin pregnancy. Acta Obstet Gynecol Scand. 2004; https://doi.org/10.1111/j.0001-6349.2004.00476.x.

  100. Källén B, Finnström O, Nygren KG, Olausson PO. In vitro fertilization (IVF) in Sweden: risk for congenital malformations after different IVF methods. Birth Defects Res A Clin Mol Teratol. 2005; https://doi.org/10.1002/bdra.20107.

  101. Fedder J, Gabrielsen A, Humaidan P, Erb K, Ernst E, Loft A. Malformation rate and sex ratio in 412 children conceived with epididymal or testicular sperm. Hum Reprod. 2007; https://doi.org/10.1093/humrep/del488.

  102. Funke S, Flach E, Kiss I, Sándor J, Vida G, Bódis J, Ertl T. Male reproductive tract abnormalities: more common after assisted reproduction? Early Hum Dev. 2010; https://doi.org/10.1016/j.earlhumdev.2010.06.015.

  103. Bonduelle M, Liebaers I, Deketelaere V, Derde MP, Camus M, Devroey P, Van Steirteghem A. Neonatal data on a cohort of 2889 infants born after ICSI (1991-1999) and of 2995 infants born after IVF (1983-1999). Hum Reprod. 2002; https://doi.org/10.1093/humrep/17.3.671.

  104. Källén B, Finnström O, Lindam A, Nilsson E, Nygren KG, Otterblad PO. Congenital malformations in infants born after in vitro fertilization in Sweden. Birth Defects Res A Clin Mol Teratol. 2010;

    Google Scholar 

  105. Silver RI, Rodriguez R, Chang TSK, Gearhart JP. In vitro fertilization is associated with an increased risk of hypospadias. J Urol. 1999; https://doi.org/10.1016/S0022-5347(05)68863-5.

  106. Massaro PA, Maclellan DL, Anderson PA, Romao RLP. Does intracytoplasmic sperm injection pose an increased risk of genitourinary congenital malformations in offspring compared to in vitro fertilization? A systematic review and meta-analysis. J Urol. 2015; https://doi.org/10.1016/j.juro.2014.10.113.

  107. Asklund C, Jørgensen N, Skakkebæk NE, Jensen TK. Increased frequency of reproductive health problems among fathers of boys with hypospadias. Hum Reprod. 2007; https://doi.org/10.1093/humrep/dem217.

  108. Jwa SC, Jwa J, Kuwahara A, Irahara M, Ishihara O, Saito H. Male subfertility and the risk of major birth defects in children born after in vitro fertilization and intracytoplasmic sperm injection: a retrospective cohort study. BMC Pregnancy Childbirth. 2019; https://doi.org/10.1186/s12884-019-2322-7.

  109. Fritz G, Czeizel AE. Abnormal sperm morphology and function in the fathers of hypospadiacs. J Reprod Fertil. 1996; https://doi.org/10.1530/jrf.0.1060063.

  110. Källén K. Role of maternal smoking and maternal reproductive history in the etiology of hypospadias in the offspring. Teratology. 2002; https://doi.org/10.1002/tera.10092.

  111. Pierik FH, Burdorf A, Deddens JA, Juttmann RE, Weber RFA. Maternal and paternal risk factors for cryptorchidism and hypospadias: a case-control study in newborn boys. Environ Health Perspect. 2004; https://doi.org/10.1289/ehp.7243.

  112. Fedder J, Loft A, Parner ET, Rasmussen S, Pinborg A. Neonatal outcome and congenital malformations in children born after ICSI with testicular or epididymal sperm: a controlled national cohort study. Hum Reprod. 2013; https://doi.org/10.1093/humrep/des377.

  113. Laprise SL. Implications of epigenetics and genomic imprinting in assisted reproductive technologies. Mol Reprod Dev. 2009; https://doi.org/10.1002/mrd.21058.

  114. Apter D, Vihko R. Early menarche, a risk factor for breast cancer, indicates early onset of ovulatory cycles. J Clin Endocrinol Metab. 1983; https://doi.org/10.1210/jcem-57-1-82.

  115. Emaus A, Espetvedt S, Veierød MB, Ballard-Barbash R, Furberg AS, Ellison PT, Jasienska G, Hjartåker A, Thune I. 17-beta-estradiol in relation to age at menarche and adult obesity in premenopausal women. Hum Reprod. 2008; https://doi.org/10.1093/humrep/dem432.

  116. Waller DK, Shaw GM, Rasmussen SA, Hobbs CA, Canfield MA, Siega-Riz AM, Gallaway MS, Correa A. Prepregnancy obesity as a risk factor for structural birth defects. Arch Pediatr Adolesc Med. 2007; https://doi.org/10.1001/archpedi.161.8.745.

  117. Blomberg MI, Källén B. Maternal obesity and morbid obesity: the risk for birth defects in the offspring. Birth Defects Res A Clin Mol Teratol. 2010; https://doi.org/10.1002/bdra.20620.

  118. Giordano F, Abballe A, De Felip E, et al. Maternal exposures to endocrine disrupting chemicals and hypospadias in offspring. Birth Defects Res A Clin Mol Teratol. 2010; https://doi.org/10.1002/bdra.20657.

  119. Marengo L, Farag NH, Canfield M. Body mass index and birth defects: Texas, 2005-2008. Matern Child Health J. 2013; https://doi.org/10.1007/s10995-012-1214-5.

  120. Adams SV, Hastert TA, Huang Y, Starr JR. No association between maternal pre-pregnancy obesity and risk of hypospadias or cryptorchidism in male newborns. Birth Defects Res A Clin Mol Teratol. 2011; https://doi.org/10.1002/bdra.20805.

  121. Rankin J, Tennant PWG, Stothard KJ, Bythell M, Summerbell CD, Bell R. Maternal body mass index and congenital anomaly risk: a cohort study. Int J Obes. 2010; https://doi.org/10.1038/ijo.2010.66.

  122. Arendt LH, Ramlau-Hansen CH, Lindhard MS, Henriksen TB, Olsen J, Yu Y, Cnattingius S. Maternal overweight and obesity and genital anomalies in male offspring: a population-based Swedish cohort study. Paediatr Perinat Epidemiol. 2017; https://doi.org/10.1111/ppe.12373.

  123. Kappel B, Hansen K, Moller J, Faaborg-Andersen J. Human placental lactogen and dU-estrogen levels in normal twin pregnancies. Acta Genet Med Gemellol. 1985; https://doi.org/10.1017/s000156600000492x.

  124. Bernstein L, Depue RH, Ross RK, Judd HL, Pike MC, Henderson BE. Higher maternal levels of free estradiol in first compared to second pregnancy: early gestational differences. J Natl Cancer Inst. 1986; https://doi.org/10.1093/jnci/76.6.1035.

  125. Hussain N, Chaghtai A, Anthony Herndon CD, Herson VC, Rosenkrantz TS, McKenna PH. Hypospadias and early gestation growth restriction in infants. Pediatrics. 2002; https://doi.org/10.1542/peds.109.3.473.

  126. Sørensen HT, Pedersen L, Nørgaard M, Wogelius P, Rothman KJ. Maternal asthma, preeclampsia and risk of hypospadias. Epidemiology. 2005; https://doi.org/10.1097/01.ede.0000181631.31713.b6.

  127. Duong HT, Hoyt AT, Carmichael SL, Gilboa SM, Canfield MA, Case A, Mcneese ML, Waller DK. Is maternal parity an independent risk factor for birth defects? Birth Defects Res A Clin Mol Teratol. 2012; https://doi.org/10.1002/bdra.22889.

  128. Mavrogenis S, Urban R, Czeizel AE. Pregnancy complications in the mothers who delivered boys with isolated hypospadias - a population-based case-control study. J Matern Neonatal Med. 2015; https://doi.org/10.3109/14767058.2014.921902.

  129. Ghirri P, Scaramuzzo RT, Bertelloni S, et al. Prevalence oh hypospadias in Italy according to severity, gestational age and birthweight: an epidemiological study. Ital J Pediatr. 2009; https://doi.org/10.1186/1824-7288-35-18.

  130. Avilés LA, Alvelo-Maldonado L, Padró-Mojica I, Seguinot J, Jorge JC. Risk factors, prevalence trend, and clustering of hypospadias cases in Puerto Rico. J Pediatr Urol. 2014; https://doi.org/10.1016/j.jpurol.2014.03.014.

  131. Gatti JM, Kirsch AJ, Troyer WA, Perez-Brayfield MR, Smith EA, Scherz HC. Increased incidence of hypospadias in small-for-gestational age infants in a neonatal intensive-care unit. BJU Int. 2001; https://doi.org/10.1046/j.1464-410X.2001.00088.x.

  132. Hughes IA, Northstone K, Golding J, ALSPAC Study Team. Reduced birth weight in boys with hypospadias: an index of androgen dysfunction? Arch Dis Child Fetal Neonatal Ed. 2002; https://doi.org/10.1136/fn.87.2.f150.

  133. Boisen KA, Chellakooty M, Schmidt IM, Kai CM, Damgaard IN, Suomi AM, Toppari J, Skakkebaek NE, Main KM. Hypospadias in a cohort of 1072 Danish newborn boys: prevalence and relationship to placental weight, anthropometrical measurements at birth, and reproductive hormone levels at three months of age. J Clin Endocrinol Metab. 2005; https://doi.org/10.1210/jc.2005-0302.

  134. Jin HC, Chee KW, Ho SKY, Chan DKL. Factors associated with hypospadias in Asian newborn babies. J Perinat Med. 2006; https://doi.org/10.1515/JPM.2006.096.

  135. Giordano F, Carbone P, Nori F, Mantovani A, Taruscio D, Figà-Talamanca I. Maternal diet and the risk of hypospadias and cryptorchidism in the offspring. Paediatr Perinat Epidemiol. 2008; https://doi.org/10.1111/j.1365-3016.2007.00918.x.

  136. Nissen KB, Udesen A, Garne E. Hypospadias: prevalence, birthweight and associated major congenital anomalies. Congenit Anom (Kyoto). 2015; https://doi.org/10.1111/cga.12071.

  137. Visser R, Burger NCM, Van Zwet EW, Hilhorst-Hofstee Y, Haak MC, Van Den Hoek J, Oepkes D, Lopriore E. Higher incidence of hypospadias in monochorionic twins. Twin Res Hum Genet. 2015; https://doi.org/10.1017/thg.2015.55.

  138. Hashimoto Y, Kawai M, Nagai S, Matsukura T, Niwa F, Hasegawa T, Heike T. Fetal growth restriction but not preterm birth is a risk factor for severe hypospadias. Pediatr Int. 2016; https://doi.org/10.1111/ped.12864.

  139. Toufaily MH, Roberts DJ, Westgate MN, Hunt AT, Holmes LB. Hypospadias, intrauterine growth restriction, and abnormalities of the placenta. Birth Defects Res. 2018; https://doi.org/10.1002/bdr2.1087.

  140. Kovalenko AA, Brenn T, Odland JØ, Nieboer E, Krettek A, Anda EE. Risk factors for hypospadias in Northwest Russia: a Murmansk county birth registry study. PLoS One. 2019; https://doi.org/10.1371/journal.pone.0214213.

  141. Estors Sastre B, Campillo Artero C, González Ruiz Y, Fernández Atuan RL, Bragagnini Rodríguez P, Frontera Juan G, Gracia Romero J. Occupational exposure to endocrine-disrupting chemicals and other parental risk factors in hypospadias and cryptorchidism development: a case–control study. J Pediatr Urol. 2019; https://doi.org/10.1016/j.jpurol.2019.07.001.

  142. Ashina M, Fujioka K, Yoshimoto S, Ioroi T, Iijima K. Incidence of hypospadias in severe small-for-gestational-age infants: a multicenter Asian population study. Pediatr Neonatol. 2020; https://doi.org/10.1016/j.pedneo.2020.07.011.

  143. Kiely EA, Chapman RS, Bajoria SK, Hollyer JS, Hurley R. Maternal serum human chorionic gonadotrophin during early pregnancy resulting in boys with hypospadias or cryptorchidism. Br J Urol. 1995; https://doi.org/10.1111/j.1464-410X.1995.tb07720.x.

  144. Schneuer FJ, Bower C, Holland AJA, Tasevski V, Jamieson SE, Barker A, Lee L, Majzoub JA, Nassar N. Maternal first trimester serum levels of free-beta human chorionic gonadotrophin and male genital anomalies. Hum Reprod. 2016; https://doi.org/10.1093/humrep/dew150.

  145. Chen Y, Huang J, Mei J. A risk prediction model for fetal hypospadias by testing maternal serum AFP and free beta-HCG. Clin Biochem. 2019; https://doi.org/10.1016/j.clinbiochem.2019.05.015.

  146. Peycelon M, Lelong N, Carlier L, et al. Association of maternal first trimester serum levels of free beta human chorionic gonadotropin and hypospadias: a population based study. J Urol. 2020; https://doi.org/10.1097/ju.0000000000000708.

  147. Fredell L. Hypospadias is related to birth weight in discordant monozygotic twins. J Urol. 1998; https://doi.org/10.1097/00005392-199812010-00084.

  148. Chambers CD, Castilla EE, Orioli I, Jones KL. Intrauterine growth restriction in like-sex twins discordant for structural defects. Birth Defects Res A Clin Mol Teratol. 2006; https://doi.org/10.1002/bdra.20247.

  149. Arendt LH, Ramlau-Hansen CH, Wilcox AJ, Henriksen TB, Olsen J, Lindhard MS. Placental weight and male genital anomalies: a nationwide Danish cohort study. Am J Epidemiol. 2016; https://doi.org/10.1093/aje/kwv336.

  150. Ghazarian AA, Trabert B, Graubard BI, Longnecker MP, Klebanoff MA, McGlynn KA. Placental weight and risk of cryptorchidism and hypospadias in the collaborative perinatal project. Am J Epidemiol. 2018; https://doi.org/10.1093/aje/kwy005.

  151. Zhu C, Zhang B, Peng T, Li MQ, Ren YY, Wu JN. Association of abnormal placental perfusion with the risk of male hypospadias: a hospital-based retrospective cohort study. BMC Pregnancy Childbirth. 2020; https://doi.org/10.1186/s12884-020-03381-1.

  152. Fujimoto T, Suwa T, Kabe K, Adachi T, Nakabayashi M, Amamiya T. Placental insufficiency in early gestation is associated with hypospadias. J Pediatr Surg. 2008; https://doi.org/10.1016/j.jpedsurg.2007.10.046.

  153. Chen Y, Sun L, Geng H, Lei X, Zhang J. Placental pathology and hypospadias. Pediatr Res. 2017; https://doi.org/10.1038/pr.2016.246.

  154. Yinon Y, Kingdom JCP, Proctor LK, Kelly EN, Pippi Salle JL, Wherrett D, Keating S, Nevo O, Chitayat D. Hypospadias in males with intrauterine growth restriction due to placental insufficiency: the placental role in the embryogenesis of male external genitalia. Am J Med Genet A. 2010; https://doi.org/10.1002/ajmg.a.33140.

  155. Jensen MS, Wilcox AJ, Olsen J, Bonde JP, Thulstrup AM, Ramlau-Hansen CH, Henriksen TB. Cryptorchidism and hypospadias in a cohort of 934,538 Danish boys: the role of birth weight, gestational age, body dimensions, and fetal growth. Am J Epidemiol. 2012; https://doi.org/10.1093/aje/kwr421.

  156. Carlson WH, Kisely SR, MacLellan DL. Maternal and fetal risk factors associated with severity of hypospadias: a comparison of mild and severe cases. J Pediatr Urol. 2009; https://doi.org/10.1016/j.jpurol.2008.12.005.

  157. Huisma F, Thomas M, Armstrong L. Severe hypospadias and its association with maternal-placental factors. Am J Med Genet A. 2013; https://doi.org/10.1002/ajmg.a.36050.

  158. Furneaux EC, Langley-Evans AJ, Langley-Evans SC. Nausea and vomiting of pregnancy: endocrine basis and contribution to pregnancy outcome. Obstet Gynecol Surv. 2001; https://doi.org/10.1097/00006254-200112000-00004.

  159. Anderka M, Mitchell AA, Louik C, Werler MM, Hernández-Diaz S, Rasmussen SA. Medications used to treat nausea and vomiting of pregnancy and the risk of selected birth defects. Birth Defects Res A Clin Mol Teratol. 2012; https://doi.org/10.1002/bdra.22865.

  160. Caton AR, Bell EM, Druschel CM, Werler MM, Mitchell AA, Browne ML, McNutt LA, Romitti PA, Olney RS, Correa A. Maternal hypertension, antihypertensive medication use, and the risk of severe hypospadias. Birth Defects Res A Clin Mol Teratol. 2008; https://doi.org/10.1002/bdra.20415.

  161. Van Zutphen AR, Werler MM, Browne MM, Romitti PA, Bell EM, McNutt LA, Druschel CM, Mitchell AA. Maternal hypertension, medication use, and hypospadias in the national birth defects prevention study. Obstet Gynecol. 2014; https://doi.org/10.1097/AOG.0000000000000103.

  162. Agopian AJ, Hoang TT, Mitchell LE, Morrison AC, Tu D, Nassar N, Canfield MA. Maternal hypertension and risk for hypospadias in offspring. Am J Med Genet A. 2016; https://doi.org/10.1002/ajmg.a.37947.

  163. Arendt LH, Henriksen TB, Lindhard MS, Parner ET, Olsen J, Ramlau-Hansen CH. Hypertensive disorders of pregnancy and genital anomalies in boys: a Danish nationwide cohort study. Epidemiology. 2018; https://doi.org/10.1097/EDE.0000000000000878.

  164. Nelson DB, Chalak LF, McIntire DD, Leveno KJ. Is preeclampsia associated with fetal malformation? A review and report of original research. J Matern Neonatal Med. 2015; https://doi.org/10.3109/14767058.2014.980808.

  165. Van Gelder MMHJ, Van Bennekom CM, Louik C, Werler MM, Roeleveld N, Mitchell AA. Maternal hypertensive disorders, antihypertensive medication use, and the risk of birth defects: a case-control study. BJOG. 2015; https://doi.org/10.1111/1471-0528.13138.

  166. Jamaladin H, van Rooij IALM, van der Zanden LFM, van Gelder MMHJ, Roeleveld N. Maternal hypertensive disorders and subtypes of hypospadias: a Dutch case-control study. Paediatr Perinat Epidemiol. 2020; https://doi.org/10.1111/ppe.12683.

  167. Trabert B, Chodick G, Shalev V, Sella T, Longnecker MP, McGlynn KA. Gestational diabetes and the risk of cryptorchidism and hypospadias. Epidemiology. 2014; https://doi.org/10.1097/EDE.0000000000000014.

  168. Mavrogenis S, Urban R, Czeizel AE, Ács N. Maternal risk factors in the origin of isolated hypospadias: a population-based case-control study. Congenit Anom (Kyoto). 2014; https://doi.org/10.1111/cga.12041.

  169. Arendt LH, Lindhard MS, Henriksen TB, Olsen J, Cnattingius S, Petersson G, Parner ET, Ramlau-Hansen CH. Maternal diabetes mellitus and genital anomalies in male offspring: a nationwide cohort study in 2 Nordic Countries. Epidemiology. 2018; https://doi.org/10.1097/EDE.0000000000000781.

  170. Åberg A, Westbom L, Källén B. Congenital malformations among infants whose mothers had gestational diabetes or preexisting diabetes. Early Hum Dev. 2001; https://doi.org/10.1016/S0378-3782(00)00125-0.

  171. Yang GR, Dye TD, Li D. Effects of pre-gestational diabetes mellitus and gestational diabetes mellitus on macrosomia and birth defects in Upstate New York. Diabetes Res Clin Pract. 2019; https://doi.org/10.1016/j.diabres.2019.107811.

  172. Wu Y, Liu B, Sun Y, Du Y, Santillan MK, Santillan DA, et al. association of maternal prepregnancy diabetes and gestational diabetes mellitus with congenital anomalies of the newborn. Diabetes Care. 2020;

    Google Scholar 

  173. Browne ML, Rasmussen SA, Hoyt AT, Waller DK, Druschel CM, Caton AR, Canfield MA, Lin AE, Carmichael SL, Romitti PA. Maternal thyroid disease, thyroid medication use, and selected birth defects in the national birth defects prevention study. Birth Defects Res A Clin Mol Teratol. 2009; https://doi.org/10.1002/bdra.20573.

  174. Campaña H, Rittler M, Gili JA, Poletta FA, Pawluk MS, Gimenez LG, Cosentino VR, Castilla EE, López Camelo JS. Association between a maternal history of miscarriages and birth defects. Birth Defects Res. 2017; https://doi.org/10.1002/bdra.23563.

  175. North K, Golding J. A maternal vegetarian diet in pregnancy is associated with hypospadias. The ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood. BJU Int. 2000;

    Google Scholar 

  176. Andersen ABT, Ehrenstein V, Erichsen R, Frøslev T, Sørensen HT. Maternal inflammatory bowel disease and hypospadias in male offspring: a population-based study in Denmark. BMJ Open Gastroenterol. 2016; https://doi.org/10.1136/bmjgast-2016-000121.

  177. Arendt LH, Lindhard MS, Henriksen TB, Forman A, Olsen J, Ramlau-Hansen CH. Maternal endometriosis and genital malformations in boys: a Danish register-based study. Fertil Steril. 2017; https://doi.org/10.1016/j.fertnstert.2017.07.009.

  178. Carmichael SL, Ma C, Werler MM, Olney RS, Shaw GM. Maternal corticosteroid use and hypospadias. J Pediatr. 2009; https://doi.org/10.1016/j.jpeds.2009.01.039.

  179. Czeizel AE, Rockenbauer M, Sørensen HT, Olsen J. The teratogenic risk of trimethoprim-sulfonamides: a population based case-control study. Reprod Toxicol. 2001; https://doi.org/10.1016/S0890-6238(01)00178-2.

  180. Garne E, Hansen AV, Morris J, et al. Use of asthma medication during pregnancy and risk of specific congenital anomalies: a European case-malformed control study. J Allergy Clin Immunol. 2015; https://doi.org/10.1016/j.jaci.2015.05.043.

  181. Czeizel AE, Rockenbauer M. Population-based case-control study of teratogenic potential of corticosteroids. Teratology. 1997; https://doi.org/10.1002/(SICI)1096-9926(199711)56:5<335::AID-TERA7>3.0.CO;2-W.

  182. Carter TC, Druschel CM, Romitti PA, Bell EM, Werler MM, Mitchell AA. Antifungal drugs and the risk of selected birth defects. Am J Obstet Gynecol. 2008; https://doi.org/10.1016/j.ajog.2007.08.044.

  183. Källén B, Olausson PO. Use of anti-asthmatic drugs during pregnancy. 3. Congenital malformations in the infants. Eur J Clin Pharmacol. 2007; https://doi.org/10.1007/s00228-006-0259-z.

  184. Fan H, Gilbert R, O’Callaghan F, Li L. Associations between macrolide antibiotics prescribing during pregnancy and adverse child outcomes in the UK: population based cohort study. BMJ. 2020; https://doi.org/10.1136/bmj.m331.

  185. Källén B, Olausson PO. Monitoring of maternal drug use and infant congenital malformations. Does loratadine cause hypospadias? Int J Risk Saf Med. 2001;

    Google Scholar 

  186. Källén B, Olausson PO. No increased risk of infant hypospadias after maternal use of loratadine in early pregnancy. Int J Med Sci. 2006; https://doi.org/10.7150/ijms.3.106.

  187. Pedersen L, Nørgaard M, Rothman KJ, Sørensen HT. Loratadine during pregnancy and hypospadias [1]. Epidemiology. 2008; https://doi.org/10.1097/EDE.0b013e318162a934.

  188. Evaluation of an association between loratadine and hypospadias - United States, 1997–2001. Arch Dermatol. 2004; https://doi.org/10.1001/archderm.140.7.893.

  189. Katz Z, Lancet M, Skornik J, Chemke J, Mogilner BM, Klinberg M. Teratogenicity of progestogens given during the first trimester of pregnancy. Obstet Gynecol. 1985;

    Google Scholar 

  190. Erichsen R, Mikkelsen E, Pedersen L, Sørensen HT. Maternal use of proton pump inhibitors during early pregnancy and the prevalence of hypospadias in male offspring. Am J Ther. 2014; https://doi.org/10.1097/MJT.0b013e3182456a8f.

  191. Källén B, Nilsson E, Olausson PO. Maternal use of loperamide in early pregnancy and delivery outcome. Acta Paediatr Int J Paediatr. 2008; https://doi.org/10.1111/j.1651-2227.2008.00718.x.

  192. Watts DH, Li D, Handelsman E, Tilson H, Paul M, Foca M, Vajaranant M, Diaz C, Tuomala R, Thompson B. Assessment of birth defects according to maternal therapy among infants in the women and infants transmission study. J Acquir Immune Defic Syndr. 2007; https://doi.org/10.1097/QAI.0b013e31802e2229.

  193. Bergman JEH, Lutke LR, Gans ROB, et al. Beta-blocker use in pregnancy and risk of specific congenital anomalies: a european case-malformed control study. Drug Saf. 2018; https://doi.org/10.1007/s40264-017-0627-x.

  194. Czeizel AE, Kazy Z, Puhó E. A population-based case-control teratological study of oral nystatin treatment during pregnancy. Scand J Infect Dis. 2003; https://doi.org/10.1080/00365540310017069.

  195. Reis M, Kllén B. Delivery outcome after maternal use of antidepressant drugs in pregnancy: an update using Swedish data. Psychol Med. 2010; https://doi.org/10.1017/S0033291709992194.

  196. Czeizel AE, Dudás I, Bánhidy F. Interpretation of controversial teratogenic findings of drugs such as phenobarbital. ISRN Obstet Gynecol. 2011; https://doi.org/10.5402/2011/719675.

  197. Howley MM, Carter TC, Browne ML, Romitti PA, Cunniff CM, Druschel CM. Fluconazole use and birth defects in the National Birth Defects Prevention Study. Am J Obstet Gynecol. 2016; https://doi.org/10.1016/j.ajog.2015.11.022.

  198. Arpino C, Brescianini S, Robert E, et al. Teratogenic effects of antiepileptic drugs: use of an international database on malformations and drug exposure (MADRE). Epilepsia. 2000; https://doi.org/10.1111/j.1528-1157.2000.tb00119.x.

  199. Hunt S, Russell A, Smithson WH, Parsons L, Robertson I, Waddell R, Irwin B, Morrison PJ, Morrow J, Craig J. Topiramate in pregnancy: preliminary experience from the UK epilepsy and pregnancy register. Neurology. 2008; https://doi.org/10.1212/01.wnl.0000318293.28278.33.

  200. Rodríguez-Pinilla E, Mejías C, Prieto-Merino D, Fernández P, Martínez-Frías ML. Risk of hypospadias in newborn infants exposed to valproic acid during the first trimester of pregnancy: a case-control study in Spain. Drug Saf. 2008; https://doi.org/10.2165/00002018-200831060-00008.

  201. Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK, de Jong-van den Berg LTW. Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med. 2010; https://doi.org/10.1056/nejmoa0907328.

  202. Werler MM, Ahrens KA, Bosco JLF, Mitchell AA, Anderka MT, Gilboa SM, Holmes LB. Use of antiepileptic medications in pregnancy in relation to risks of birth defects. Ann Epidemiol. 2011; https://doi.org/10.1016/j.annepidem.2011.08.002.

  203. Hernández-Díaz S, Smith CR, Shen A, Mittendorf R, Hauser WA, Yerby M, Holmes LB. Comparative safety of antiepileptic drugs during pregnancy. Neurology. 2012; https://doi.org/10.1212/WNL.0b013e3182574f39.

  204. Vajda FJE, O’Brien TJ, Graham J, Lander CM, Eadie MJ. Associations between particular types of fetal malformation and antiepileptic drug exposure in utero. Acta Neurol Scand. 2013; https://doi.org/10.1111/ane.12115.

  205. Vajda FJ, O’Brien TJ, Graham JE, Lander CM, Eadie MJ. Dose dependence of fetal malformations associated with valproate. Neurology. 2013; https://doi.org/10.1212/WNL.0b013e3182a43e81.

  206. Veiby G, Daltveit AK, Engelsen BA, Gilhus NE. Fetal growth restriction and birth defects with newer and older antiepileptic drugs during pregnancy. J Neurol. 2014; https://doi.org/10.1007/s00415-013-7239-x.

  207. Tennis P, Chan KA, Curkendall SM, et al. Topiramate use during pregnancy and major congenital malformations in multiple populations. Birth Defects Res A Clin Mol Teratol. 2015; https://doi.org/10.1002/bdra.23357.

  208. Bánhidy F, Puhó EH, Czeizel AE. Efficacy of medical care of epileptic pregnant women based on the rate of congenital abnormalities in their offspring. Congenit Anom (Kyoto). 2011; https://doi.org/10.1111/j.1741-4520.2010.00300.x.

  209. Blotière PO, Raguideau F, Weill A, Elefant E, Perthus I, Goulet V, Rouget F, Zureik M, Coste J, Dray-Spira R. Risks of 23 specific malformations associated with prenatal exposure to 10 antiepileptic drugs. Neurology. 2019; https://doi.org/10.1212/WNL.0000000000007696.

  210. Klip H, Verloop J, Van Gool JD, Koster META, Burger CW, Van Leeuwen FE. Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet. 2002; https://doi.org/10.1016/S0140-6736(02)08152-7.

  211. Palmer JR, Wise LA, Robboy SJ, Titus-Ernstoff L, Noller KL, Herbst AL, Troisi R, Hoover RN. Hypospadias in sons of women exposed to diethylstilbestrol in utero. Epidemiology. 2005; https://doi.org/10.1097/01.ede.0000164789.59728.6d.

  212. Brouwers MM, Feitz WFJ, Roelofs LAJ, Kiemeney LALM, de Gier RPE, Roeleveld N. Hypospadias: a transgenerational effect of diethylstilbestrol? Hum Reprod. 2006; https://doi.org/10.1093/humrep/dei398.

  213. Kalfa N, Paris F, Soyer-Gobillard MO, Daures JP, Sultan C. Prevalence of hypospadias in grandsons of women exposed to diethylstilbestrol during pregnancy: a multigenerational national cohort study. Fertil Steril. 2011; https://doi.org/10.1016/j.fertnstert.2011.02.047.

  214. Pons JC, Papiernik E, Billon A, Hessabi M, Duyme M. Hypospadias in sons of women exposed to diethylstilbestrol in utero [2]. Prenat Diagn. 2005; https://doi.org/10.1002/pd.1136.

  215. Tournaire M, Devouche E, Epelboin S, Cabau A, Dunbavand A, Levadou A. Birth defects in children of men exposed in utero to diethylstilbestrol (DES). Therapie. 2018; https://doi.org/10.1016/j.therap.2018.02.007.

  216. Materna-Kiryluk A, Wiśniewska K, Badura-Stronka M, et al. Parental age as a risk factor for isolated congenital malformations in a Polish population. Paediatr Perinat Epidemiol. 2009; https://doi.org/10.1111/j.1365-3016.2008.00979.x.

  217. Reefhuis J, Honein MA. Maternal age and non-chromosomal birth defects, Atlanta - 1968-2000: Teenager or thirty-something, who is at risk? Birth Defects Res A Clin Mol Teratol. 2004; https://doi.org/10.1002/bdra.20065.

  218. Fisch H, Lambert SM, Hensle TW, Hyun G. Hypospadias rates in new york state are not increasing. J Urol. 2009; https://doi.org/10.1016/j.juro.2009.01.059.

  219. Gill SK, Broussard C, Devine O, Green RF, Rasmussen SA, Reefhuis J. Association between maternal age and birth defects of unknown etiology - United States, 1997-2007. Birth Defects Res A Clin Mol Teratol. 2012; https://doi.org/10.1002/bdra.23049.

  220. Agopian AJ, Lupo PJ, Canfield MA, Langlois PH. Case-control study of maternal residential atrazine exposure and male genital malformations. Am J Med Genet Part A. 2013; https://doi.org/10.1002/ajmg.a.35815.

  221. Jorge JC. Age of the mother as a risk factor and timing of hypospadias repair according to severity. J Urol Nephrol Open Access. 2016; https://doi.org/10.15226/2473-6430/2/1/00109.

  222. McIntosh GC, Olshan AF, Baird PA. Paternal age and the risk of birth defects in offspring. Epidemiology. 1995; https://doi.org/10.1097/00001648-199505000-00016.

  223. Ormond G, Nieuwenhuijsen MJ, Nelson P, Toledano MB, Iszatt N, Geneletti S, Elliott P. Endocrine disruptors in the workplace, hair spray, folate supplementation, and risk of hypospadias: case-control study. Environ Health Perspect. 2009; https://doi.org/10.1289/ehp.11933.

  224. Carmichael SL, Ma C, Feldkamp ML, Munger RG, Olney RS, Botto LD, Shaw GM, Correa A. Nutritional factors and hypospadias risks. Paediatr Perinat Epidemiol. 2012; https://doi.org/10.1111/j.1365-3016.2012.01272.x.

  225. Tan C, Zhao Y, Wang S. Is a vegetarian diet safe to follow during pregnancy? A systematic review and meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2019; https://doi.org/10.1080/10408398.2018.1461062.

  226. Carmichael SL, Cogswell ME, Ma C, Gonzalez-Feliciano A, Olney RS, Correa A, Shaw GM. Hypospadias and maternal intake of phytoestrogens. Am J Epidemiol. 2013; https://doi.org/10.1093/aje/kws591.

  227. Michikawa T, Yamazaki S, Ono M, et al. Isoflavone intake in early pregnancy and hypospadias in the Japan environment and children’s study. Urology. 2019; https://doi.org/10.1016/j.urology.2018.11.008.

  228. Gilboa SM, Lee KA, Cogswell ME, Traven FK, Botto LD, Riehle-Colarusso T, Correa A, Boyle CA. Maternal intake of vitamin E and birth defects, national birth defects prevention study, 1997 to 2005. Birth Defects Res A Clin Mol Teratol. 2014; https://doi.org/10.1002/bdra.23247.

  229. De Kort CAR, Nieuwenhuijsen MJ, Mendez MA. Relationship between maternal dietary patterns and hypospadias. Paediatr Perinat Epidemiol. 2011; https://doi.org/10.1111/j.1365-3016.2011.01194.x.

  230. Christensen JS, Asklund C, Skakkebæk NE, et al. Association between organic dietary choice during pregnancy and hypospadias in offspring: a study of mothers of 306 boys operated on for hypospadias. J Urol. 2013; https://doi.org/10.1016/j.juro.2012.09.116.

  231. Brantsæter AL, Torjusen H, Meltzer HM, et al. Organic food consumption during pregnancy and hypospadias and cryptorchidism at birth: The Norwegian mother and child cohort study (MoBa). Environ Health Perspect. 2016; https://doi.org/10.1289/ehp.1409518.

  232. Källén B. Congenital malformations in infants whose mothers reported the use of folic acid in early pregnancy in Sweden. A prospective population study. Congenit Anom (Kyoto). 2007; https://doi.org/10.1111/j.1741-4520.2007.00159.x.

  233. Carmichael SL, Yang W, Correa A, Olney RS, Shaw GM. Hypospadias and intake of nutrients related to one-carbon metabolism. J Urol. 2009; https://doi.org/10.1016/j.juro.2008.09.041.

  234. Dokter EMJ, van Rooij IALM, Wijers CHW, Groothuismink JM, van der Biezen JJ, Feitz WFJ, Roeleveld N, van der Zanden LFM. Interaction between MTHFR 677C>T and periconceptional folic acid supplementation in the risk of Hypospadias. Birth Defects Res A Clin Mol Teratol. 2016; https://doi.org/10.1002/bdra.23487.

  235. Mavrogenis S, Urban R, Czeizel AE, Acs N. Possible preventive effect of high doses of folic acid for isolated hypospadias: a national population-based case-control study. Am J Med Genet A. 2014;

    Google Scholar 

  236. Kowal A, Mydlak D, Ołtarzewski M, Bauer A, Sawicka E, Hozyasz KK. Propionylcarnitine and methionine concentrations in newborns with hypospadias. Cent Eur J Urol. 2013; https://doi.org/10.5173/ceju.2013.03.art36.

  237. Yazdy MM, Mitchell AA, Liu S, Werler MM. Maternal dietary glycaemic intake during pregnancy and the risk of birth defects. Paediatr Perinat Epidemiol. 2011; https://doi.org/10.1111/j.1365-3016.2011.01198.x.

  238. Carmichael SL, Ma C, Shaw GM. Maternal smoking, alcohol, and caffeine exposures and risk of hypospadias. Birth Defects Res. 2017; https://doi.org/10.1002/bdr2.1044.

  239. Carmichael SL, Shaw GM, Laurent C, Lammer EJ, Olney RS. Hypospadias and maternal exposures to cigarette smoke. Paediatr Perinat Epidemiol. 2005; https://doi.org/10.1111/j.1365-3016.2005.00680.x.

  240. Hackshaw A, Rodeck C, Boniface S. Maternal smoking in pregnancy and birth defects: a systematic review based on 173 687 malformed cases and 11.7 million controls. Hum Reprod Update. 2011; https://doi.org/10.1093/humupd/dmr022.

  241. Plana-Ripoll O, Li J, Kesmodel US, Parner E, Olsen J, Basso O. Reproductive function in the sons of women who experienced stress due to bereavement before and during pregnancy: a nationwide population-based cohort study. Fertil Steril. 2017; https://doi.org/10.1016/j.fertnstert.2016.10.016.

  242. Carmichael SL, Ma C, Tinker S, Shaw GM. Maternal stressors and social support and risks of delivering babies with gastroschisis or hypospadias. Am J Epidemiol. 2017; https://doi.org/10.1093/aje/kww121.

  243. Battin M, Albersheim S, Newman D. Congenital genitourinary tract abnormalities following cocaine exposure in utero. Am J Perinatol. 1995; https://doi.org/10.1055/s-2007-994513.

  244. Reece AS, Hulse GK. Broad Spectrum epidemiological contribution of cannabis and other substances to the teratological profile of northern New South Wales: geospatial and causal inference analysis. BMC Pharmacol Toxicol. 2020; https://doi.org/10.1186/s40360-020-00450-1.

  245. Weidner IS, Møller H, Jensen TK, Skakkebæk NE. Cryptorchidism and hypospadias in sons of gardeners and farmers. Environ Health Perspect. 1998; https://doi.org/10.1289/ehp.98106793.

  246. Kristensen P, Irgens LM, Andersen A, Bye AS, Sundheim L. Birth defects among offspring of Norwegian farmers, 1967-1991. Epidemiology. 1997; https://doi.org/10.1097/00001648-199709000-00011.

  247. Carran M, Shaw IC. New Zealand Malayan war veterans’ exposure to dibutylphthalate is associated with an increased incidence of cryptorchidism, hypospadias and breast cancer in their children. N Z Med J. 2012;

    Google Scholar 

  248. Vrijheid M, Armstrong B, Dolk H, Van Tongeren M, Botting B. Risk of hypospadias in relation to maternal occupational exposure to potential endocrine disrupting chemicals. Occup Environ Med. 2003; https://doi.org/10.1136/oem.60.8.543.

  249. Morales-Surez-Varela MM, Toft GV, Jensen MS, Ramlau-Hansen C, Kaerlev L, Thulstrup AM, Llopis-Gonzlez A, Olsen J, Bonde JP. Parental occupational exposure to endocrine disrupting chemicals and male genital malformations: a study in the Danish national birth cohort study. Environ Heal A Glob Access Sci Source. 2011; https://doi.org/10.1186/1476-069X-10-3.

  250. Rocheleau CM, Romitti PA, Sanderson WT, Sun L, Lawson CC, Waters MA, Stewart PA, Olney RS, Reefhuis J. Maternal occupational pesticide exposure and risk of hypospadias in the National Birth Defects Prevention Study. Birth Defects Res A Clin Mol Teratol. 2011; https://doi.org/10.1002/bdra.22860.

  251. Dugas J, Nieuwenhuijsen MJ, Martinez D, Iszatt N, Nelson P, Elliott P. Use of biocides and insect repellents and risk of hypospadias. Occup Environ Med. 2010; https://doi.org/10.1136/oem.2009.047373.

  252. Cognez N, Warembourg C, Zaros C, Metten MA, Bouvier G, Garlantézec R, Charles MA, Béranger R, Chevrier C. Residential sources of pesticide exposure during pregnancy and the risks of hypospadias and cryptorchidism: the French ELFE birth cohort. Occup Environ Med. 2019; https://doi.org/10.1136/oemed-2019-105801.

  253. Michalakis M, Tzatzarakis MN, Kovatsi L, Alegakis AK, Tsakalof AK, Heretis I, Tsatsakis A. Hypospadias in offspring is associated with chronic exposure of parents to organophosphate and organochlorine pesticides. Toxicol Lett. 2014; https://doi.org/10.1016/j.toxlet.2013.10.015.

  254. Garcia AM, Fletcher T. Maternal occupation in the leather industry and selected congenital malformations. Occup Environ Med. 1998; https://doi.org/10.1136/oem.55.4.284.

  255. Araneta MRG, Schlangen KM, Edmonds LD, Destiche DA, Merz RD, Hobbs CA, Flood TJ, Harris JA, Krishnamurti D, Gray GC. Prevalence of birth defects among infants of Gulf War veterans in Arkansas, Arizona, California, Georgia, Hawaii, and Iowa, 1989-1993. Birth Defects Res A Clin Mol Teratol. 2003; https://doi.org/10.1002/bdra.10033.

  256. Kalfa N, Paris F, Philibert P, et al. Is hypospadias associated with prenatal exposure to endocrine disruptors? A French collaborative controlled study of a cohort of 300 consecutive children without genetic defect. Eur Urol. 2015; https://doi.org/10.1016/j.eururo.2015.05.008.

  257. Jørgensen KT, Jensen MS, Toft GV, Larsen AD, Bonde JP, Hougaard KS. Risk of cryptorchidism and hypospadias among boys of maternal hairdressers - a Danish population-based cohort study. Scand J Work Environ Health. 2013; https://doi.org/10.5271/sjweh.3330.

  258. Haraux E, Braun K, Buisson P, Stéphan-Blanchard E, Devauchelle C, Ricard J, Boudailliez B, Tourneux P, Gouron R, Chardon K. Maternal exposure to domestic hair cosmetics and occupational endocrine disruptors is associated with a higher risk of hypospadias in the offspring. Int J Environ Res Public Health. 2017; https://doi.org/10.3390/ijerph14010027.

  259. Kay VR, Bloom MS, Foster WG. Reproductive and developmental effects of phthalate diesters in males. Crit Rev Toxicol. 2014; https://doi.org/10.3109/10408444.2013.875983.

  260. Schnitzer PG, Olshan AF, Erickson JD. Paternal occupation and risk of birth defects in offspring. Epidemiology. 1995; https://doi.org/10.1097/00001648-199511000-00003.

  261. Irgens Å, Krüger K, Skorve AH, Irgens LM. Birth defects and paternal occupational exposure. Hypotheses tested in a record linkage based dataset. Acta Obstet Gynecol Scand. 2000; https://doi.org/10.1034/j.1600-0412.2000.079006465.x.

  262. Longnecker MP, Klebanoff MA, Brock JW, Zhou H, Gray KA, Needham LL, Wilcox AJ. Maternal serum level of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene and risk of cryptorchidism, hypospadias, and polythelia among male offspring. Am J Epidemiol. 2002; https://doi.org/10.1093/aje/155.4.313.

  263. Bhatia R, Shiau R, Petreas M, Weintraub JM, Farhang L, Eskenazi B. Organochlorine pesticides and male genital anomalies in the child health and development studies. Environ Health Perspect. 2005; https://doi.org/10.1289/ehp.7382.

  264. McGlynn KA, Guo X, Graubard BI, Brock JW, Klebanoff MA, Longnecker MP. Maternal pregnancy levels of polychlorinated biphenyls and risk of hypospadias and cryptorchidism in male offspring. Environ Health Perspect. 2009; https://doi.org/10.1289/ehp.0800389.

  265. Carmichael SL, Herring AH, Sjödin A, Jones R, Needham L, Ma C, Ding K, Shaw GM. Hypospadias and halogenated organic pollutant levels in maternal mid-pregnancy serum samples. Chemosphere. 2010; https://doi.org/10.1016/j.chemosphere.2010.04.055.

  266. Chevrier C, Petit C, Philippat C, et al. Maternal urinary phthalates and phenols and male genital anomalies. Epidemiology. 2012; https://doi.org/10.1097/EDE.0b013e318246073e.

  267. Choi H, Kim J, Im Y, Lee S, Kim Y. The association between some endocrine disruptors and hypospadias in biological samples. J Environ Sci Heal A Toxic Hazard Subst Environ Eng. 2012; https://doi.org/10.1080/10934529.2012.680387.

  268. Rignell-Hydbom A, Lindh CH, Dillner J, Jönsson BAG, Rylander L. A nested case-control study of intrauterine exposure to persistent organochlorine pollutants and the risk of hypospadias. PLoS One. 2012; https://doi.org/10.1371/journal.pone.0044767.

  269. Trabert B, Longnecker MP, Brock JW, Klebanoff MA, McGlynn KA. Maternal pregnancy levels of trans-nonachlor and oxychlordane and prevalence of cryptorchidism and hypospadias in boys. Environ Health Perspect. 2012; https://doi.org/10.1289/ehp.1103936.

  270. Sharma T, Banerjee BD, Yadav CS, Gupta P, Sharma S. Heavy metal levels in adolescent and maternal blood: association with risk of hypospadias. ISRN Pediatr. 2014; https://doi.org/10.1155/2014/714234.

  271. Jensen MS, Anand-Ivell R, Nørgaard-Pedersen B, Jönsson BAG, Bonde JP, Hougaard DM, Cohen A, Lindh CH, Ivell R, Toft G. Amniotic fluid phthalate levels and male fetal gonad function. Epidemiology. 2015; https://doi.org/10.1097/EDE.0000000000000198.

  272. Fernández MF, Arrebola JP, Jiménez-Díaz I, Sáenz JM, Molina-Molina JM, Ballesteros O, Kortenkamp A, Olea N. Bisphenol A and other phenols in human placenta from children with cryptorchidism or hypospadias. Reprod Toxicol. 2016; https://doi.org/10.1016/j.reprotox.2015.11.002.

  273. Toft G, Jönsson BAG, Bonde JP, Nørgaard-Pedersen B, Hougaard DM, Cohen A, Lindh CH, Ivell R, Anand-Ive R, Lindhard MS. Perfluorooctane sulfonate concentrations in amniotic fluid, biomarkers of fetal leydig cell function, and cryptorchidism and hypospadias in Danish boys (1980-1996). Environ Health Perspect. 2016; https://doi.org/10.1289/ehp.1409288.

  274. Sathyanarayana S, Butts S, Wang C, Barrett E, Nguyen R, Schwartz SM, Haaland W, Swan SH. Early prenatal phthalate exposure, sex steroid hormones, and birth outcomes. J Clin Endocrinol Metab. 2017; https://doi.org/10.1210/jc.2016-3837.

  275. Anand-Ivell R, Cohen A, Nørgaard-Pedersen B, Jönsson BAG, Bonde JP, Hougaard DM, Lindh CH, Toft G, Lindhard MS, Ivell R. Amniotic fluid INSL3 measured during the critical time window in human pregnancy relates to cryptorchidism, hypospadias, and phthalate load: a large case-control study. Front Physiol. 2018; https://doi.org/10.3389/fphys.2018.00406.

  276. Warembourg C, Botton J, Lelong N, et al. Prenatal exposure to glycol ethers and cryptorchidism and hypospadias: a nested case-control study. Occup Environ Med. 2018; https://doi.org/10.1136/oemed-2017-104391.

  277. Koren G, Carnevale A, Ling J, Ozsarfati J, Kapur B, Bagli D. Fetal exposure to polybrominated diphenyl ethers and the risk of hypospadias: focus on the congeners involved. J Pediatr Urol. 2019; https://doi.org/10.1016/j.jpurol.2019.05.023.

  278. Haraux E, Tourneux P, Kouakam C, Stephan-Blanchard E, Boudailliez B, Leke A, et al. Isolated hypospadias: The impact of prenatal exposure to pesticides, as determined by meconium analysis. Environ Int. 2018;

    Google Scholar 

  279. Poon S, Koren G, Carnevale A, Aleksa K, Ling J, Ozsarfati J, et al. Association of in utero exposure to polybrominated diphenyl ethers with the risk of hypospadias. JAMA Pediatr. 2018;

    Google Scholar 

  280. Dolk H, Vrijheid M, Armstrong B, et al. Risk of congenital anomalies near hazardous-waste landfill sites in Europe: The EUROHAZCON study. Lancet. 1998; https://doi.org/10.1016/S0140-6736(98)01352-X.

  281. Li X, Sundquist J, Hamano T, Sundquist K. Family and neighborhood socioeconomic inequality in cryptorchidism and hypospadias: a nationwide study from Sweden. Birth Defects Res. 2019; https://doi.org/10.1002/bdr2.1444.

  282. Fernández N, Lorenzo A, Bägli D, Zarante I. Altitude as a risk factor for the development of hypospadias. Geographical cluster distribution analysis in South America. J Pediatr Urol. 2016; https://doi.org/10.1016/j.jpurol.2016.03.015.

  283. Aschengrau A, Gallagher LG, Winter M, Butler L, Patricia Fabian M, Vieira VM. Modeled exposure to tetrachloroethylene-contaminated drinking water and the occurrence of birth defects: a case-control study from Massachusetts and Rhode Island. Environ Heal. 2018; https://doi.org/10.1186/s12940-018-0419-5.

  284. Ren S, Haynes E, Hall E, Hossain M, Chen A, Muglia L, Lu L, DeFranco E. Periconception exposure to air pollution and risk of congenital malformations. J Pediatr. 2018; https://doi.org/10.1016/j.jpeds.2017.09.076.

  285. Salavati N, Strak M, Burgerhof JGM, de Walle HEK, Erwich JJHM, Bakker MK. The association of air pollution with congenital anomalies: an exploratory study in the northern Netherlands. Int J Hyg Environ Health. 2018; https://doi.org/10.1016/j.ijheh.2018.07.008.

  286. Sheth KR, Kovar E, White JT, et al. Hypospadias risk is increased with maternal residential exposure to hormonally active hazardous air pollutants. Birth Defects Res. 2019; https://doi.org/10.1002/bdr2.1461.

  287. White JT, Kovar E, Chambers TM, Sheth KR, Peckham-Gregory EC, O’Neill M, Langlois PH, Jorgez CJ, Lupo PJ, Seth A. Hypospadias risk from maternal residential exposure to heavy metal hazardous air pollutants. Int J Environ Res Public Health. 2019; https://doi.org/10.3390/ijerph16060930.

  288. Huang C-C, Chun PS, Yu CB, Guo YL. Periconceptional exposure to air pollution and congenital hypospadias among full-term infants. Environ Res. 2020; https://doi.org/10.1016/j.envres.2020.109151.

  289. Källén BAJ, Robert E. Drinking water chlorination and delivery outcome - a registry-based study in Sweden. Reprod Toxicol. 2000; https://doi.org/10.1016/S0890-6238(00)00086-1.

  290. Luben TJ, Nuckols JR, Mosley BS, Hobbs C, Reif JS. Maternal exposure to water disinfection by-products during gestation and risk of hypospadias. Occup Environ Med. 2008; https://doi.org/10.1136/oem.2007.034256.

  291. Iszatt N, Nieuwenhuijsen MJ, Nelson P, Elliott P, Toledano MB. Water consumption and use, trihalomethane exposure, and the risk of hypospadias. Pediatrics. 2011; https://doi.org/10.1542/peds.2009-3356.

  292. González JG, Miranda MIV, Mullor MR, Jerez AFH, Carreño TP, Rodriguez RA. Association of reproductive disorders and male congenital anomalies with environmental exposure to endocrine active pesticides. Reprod Toxicol. 2017; https://doi.org/10.1016/j.reprotox.2017.04.011.

  293. Rappazzo KM, Warren JL, Davalos AD, Meyer RE, Sanders AP, Brownstein NC, Luben TJ. Maternal residential exposure to specific agricultural pesticide active ingredients and birth defects in a 2003–2005 North Carolina birth cohort. Birth Defects Res. 2019; https://doi.org/10.1002/bdr2.1448.

  294. Carmichael SL, Yang W, Roberts EM, Kegley SE, Wolff C, Guo L, Lammer EJ, English P, Shaw GM. Hypospadias and residential proximity to pesticide applications. Pediatrics. 2013; https://doi.org/10.1542/peds.2013-1429.

  295. Winston JJ, Emch M, Meyer RE, Langlois P, Weyer P, Mosley B, Olshan AF, Band LE, Luben TJ. Hypospadias and maternal exposure to atrazine via drinking water in the National Birth Defects Prevention study. Environ Heal. 2016; https://doi.org/10.1186/s12940-016-0161-9.

  296. Wehrung DA, Hay S. A study of seasonal incidence of congenital malformations in the United States. Br J Prev Soc Med. 1970; https://doi.org/10.1136/jech.24.1.24.

  297. Roberts CJ, Lloyd S. Observations on the epidemiology of simple hypospadias. Br Med J. 1973; https://doi.org/10.1136/bmj.1.5856.768.

  298. Avellán L. On aetiological factors in hypospadias. Scand J Plast Reconstr Surg Hand Surg. 1977; https://doi.org/10.3109/02844317709025507.

  299. Kilinc MF, Cakmak S, Demir DO, Doluoglu OG, Yildiz Y, Horasanli K, Dalkilic A. Does maternal exposure during pregnancy to higher ambient temperature increase the risk of hypospadias? J Pediatr Urol. 2016; https://doi.org/10.1016/j.jpurol.2016.06.015.

  300. Mamoulakis C, Avgenakis G, Gkatzoudi C, et al. Seasonal trends in the prevalence of hypospadias: aetiological implications. Exp Ther Med. 2017; https://doi.org/10.3892/etm.2017.4323.

  301. Skriver MV, Pedersen L, Stang P, Lund L, Rothman KJ, Sørensen HT. The month of birth does not affect the risk of hypospadias. Eur J Epidemiol. 2004; https://doi.org/10.1007/s10654-004-2171-0.

  302. Kim KS, Torres CR, Yucel S, Raimondo K, Cunha GR, Baskin LS. Induction of hypospadias in a murine model by maternal exposure to synthetic estrogens. Environ Res. 2004; https://doi.org/10.1016/S0013-9351(03)00085-9.

  303. Gray LE, Ostby J, Furr J, et al. Effects of environmental antiandrogens on reproductive development in experimental animals. Hum Reprod Update. 2001; https://doi.org/10.1093/humupd/7.3.248.

  304. Van Der Zanden LFM, Galesloot TE, Feitz WFJ, Brouwers MM, Shi M, Knoers NVAM, Franke B, Roeleveld N, Van Rooij IALM. Exploration of gene-environment interactions, maternal effects and parent of origin effects in the etiology of hypospadias. J Urol. 2012; https://doi.org/10.1016/j.juro.2012.08.033.

  305. Van Der Zanden LFM, Van Rooij IALM, Feitz WFJ, et al. Common variants in DGKK are strongly associated with risk of hypospadias. Nat Genet. 2011; https://doi.org/10.1038/ng.721.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loes F. M. van der Zanden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Zanden, L.F.M., van Rooij, I.A.L.M., Roeleveld, N. (2022). Epidemiology of Hypospadias. In: Hadidi, A.T. (eds) Hypospadias Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-94248-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94248-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94247-2

  • Online ISBN: 978-3-030-94248-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics