Skip to main content

Reconstruction of Past Environment and Climate Using Wetland Sediment Records from the Sierra Nevada

  • Chapter
  • First Online:
The Landscape of the Sierra Nevada

Abstract

Understanding the effects of climate change and human activities on fragile mountain ecosystems is necessary to successfully managing these environments under future climate scenarios (e.g., global warming, enhanced aridity). This can be done through the study of paleoecological records, which can provide long paleoenvironmental databases containing information on how ecosystems reacted to climate change and human disturbances before the historical record. These studies can be particularly interesting when focusing on especially warm and/or dry past climatic phases. Biotic (pollen, charcoal) and abiotic (physical, geochemistry) analyses from wetland sediment records from the Sierra Nevada, southern Spain record changes in vegetation, fire history and lake sedimentation since ~11,700 years (cal yr BP). This multiproxy paleoecological study indicates that maxima in temperature and humidity occurred in the area in the Early and Middle Holocene, with a peak in precipitation between ~10,500 and 7000 cal yr BP. This is deduced by maxima in water runoff, the highest abundance of tree species and algae and high total organic carbon values recorded in the alpine wetland’s sedimentary records of the Sierra Nevada during that time period. In the last 7000 cal yr BP, and especially after a transition period between ~7000 and 5000 cal yr BP, a progressive aridification process took place, indicated by the decrease in tree species and the increase in xerophytic herbs in this region and a reduction in water runoff evidenced by the decrease in detritic input in the wetland sedimentary records. An increasing trend in Saharan dust deposition in the Sierra Nevada wetlands is also recorded through inorganic geochemical proxies, probably due to a coetaneous loss of vegetation cover in North Africa. The process of progressive aridification during the Middle and Late Holocene was interrupted by millennial-scale climatic oscillations and several periods of relative humid/droughty conditions and warm/cold periods have been identified in different temperature and/or precipitation proxies. Enhanced human impact has been observed in the Sierra Nevada in the last ~3000 cal yr BP through the increase in fires, grazing, cultivation, atmospheric pollution as well as reforestation by Pinus and the massive cultivation of Olea at lower altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RS, Jiménez-Moreno G, Carrión JS, Pérez-Martínez C (2011) Holocene vegetation history from Laguna de Río Seco, Sierra Nevada, southern Spain. Quat Sci Rev 30:1615–1629

    Article  Google Scholar 

  • Beug H-J (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, Fisch. Stuttg., Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete, Friedrich Pfeil, München

    Google Scholar 

  • Blaauw M (2010) Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quat Geochron 5:512–518

    Article  Google Scholar 

  • Cacho I, Grimalt JO, Canals M (2002) Response of the Western Mediterranean Sea to rapid climatic variability during the last 50,000 years: a molecular biomarker approach. J Mar Sys 33–34:253–272

    Article  Google Scholar 

  • Cranwell PA (1984) Lipid geochemistry of sediments from Upton broad, a small productive lake. Org Geochem 7:25–37

    Article  Google Scholar 

  • Brayshaw DJ, Rambeau CMC, Smith SJ (2011) Changes in Mediterranean climate during the Holocene: insights from global and regional climate modelling. Holocene 21:15–31

    Article  Google Scholar 

  • Burjachs F, Giralt S, Roca JR et al (1997) Palinología holocénica y desertización en el Mediterráneo occidental. In: Ibáñez JJ, Valero BL, Machado C (eds) El paisaje mediterráneo a través del espacio y del tiempo. Implicaciones en la desertificación, Geoforma Editores, Logroño, pp 379–394

    Google Scholar 

  • Camuera J, Jiménez-Moreno G, Ramos-Román MJ et al (2018) Orbital-scale environmental and climatic changes recorded in a new ~ 200,000-year-long multiproxy sedimentary record from Padul, southern Iberian Peninsula. Quat Sci Rev 198:91–114

    Article  Google Scholar 

  • Camuera J, Jiménez-Moreno G, Ramos-Román MJ et al (2019) Vegetation and climate changes during the last two glacial-interglacial cycles in the western Mediterranean: A new long pollen record from Padul (southern Iberian Peninsula). Quat Sci Rev 205:86–105

    Article  Google Scholar 

  • Camuera J, Jiménez-Moreno G, Ramos-Román MJ et al (2021) Chronological control and centennial-scale climatic subdivisions of the Last Glacial Termination in the western Mediterranean region. Quat Sci Rev 255:106814

    Google Scholar 

  • Carrión JS (2002) Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quat Sci Rev 21:2047–2066

    Article  Google Scholar 

  • Carrión JS, Sánchez-Gómez P, Mota JF et al (2003) Fire and grazing are contigent on the Holocene vegetation dynamics of Sierra de Gádor, southern Spain. Holocene 13:839–849

    Article  Google Scholar 

  • Carrión JS, Fernández S, Jiménez J et al (2019) The sequence at Carihuela Cave and its potential for research into Neanderthal ecology and the Mousterian in southern Spain. Quat Sci Rev 217:194–216

    Article  Google Scholar 

  • Carrión JS, Fuentes N, González-Sampériz P (2007) Holocene environmental change in a montane region of sourthern Europe with a long history of human settlement. Quat Sci Rev 26:1455–1475

    Article  Google Scholar 

  • Combourieu Nebout N, Peyron O, Dormoy I et al (2009) Rapid climatic variability in the west Mediterranean during the last 25000 years from high resolution pollen data. Clim past 5:503–521

    Article  Google Scholar 

  • Daniau AL, Sánchez-Goñi MF, Beaufort L et al (2007) Dansgaard-Oeschger climatic variability revealed by fire emissions in southwestern Iberia. Quat Sci Rev 26:1369–1383

    Article  Google Scholar 

  • Dearing J (1999) Magnetic susceptibility. In: Walden J, Oldfield F, Smith J (eds) Environmental magnetism: a practical guide. Quaternary Research Association, London, pp 35–62

    Google Scholar 

  • Dormoy I, Peyron O, Combourieu Nebout N et al (2009) Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records. Clim past 5:615–632

    Article  Google Scholar 

  • Eglinton TI, Eglinton G (2008) Molecular proxies for paleoclimatology. Earth Planet Sci Lett 275:1–16

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of Pollen analysis. Caldwell. Blackburn Press, New Jersey, pp 69–90

    Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9:121–137

    Google Scholar 

  • Fernández S, Fuentes N, Carrión JS et al (2007) The Holocene and upper Pleistocene pollen sequence of Carihuela cave, southern Spain. Geobios 40:75–90

    Article  Google Scholar 

  • Ficken KJ, Li B, Swain D, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749

    Article  Google Scholar 

  • Fletcher WJ, Sanchez Goñi MF (2008) Orbital- and sub-orbital-scale climate impacts on vegetation of the western Mediterranean basin over the last 48,000 yr. Quat Res 70:451–464

    Article  Google Scholar 

  • Fletcher WJ, Sanchez Goñi MF, Peyron O, Dormoy I (2010) Abrupt climate changes of the last deglaciation detected in a Western Mediterranean forest record. Clim past 6:245–264

    Article  Google Scholar 

  • Fletcher WJ, Debret M, Sanchez Goñi MF (2013) Mid-Holocene emergence of a low frequency millennial oscillation in western Mediterranean climate: implications for past dynamics of the North Atlantic atmospheric westerlies. Holocene 23(2):153–166

    Article  Google Scholar 

  • García-Alix A, Jiménez-Moreno G, Anderson RS et al (2012) Holocene paleoenvironmental evolution of a high-elevation wetland in Sierra Nevada, southern Spain, deduced from an isotopic record. J Paleolimnol 48:471–484

    Article  Google Scholar 

  • García-Alix A, Jimenez-Espejo FJ, Lozano JA et al (2013) Anthropogenic impact and lead pollution throughout the Holocene in southern Iberia. Sci Total Environ 449:451–460

    Article  Google Scholar 

  • García-Alix A, Jiménez-Espejo FJ, Toney JL et al (2017) Alpine bogs of southern Spain show human-induced environmental change superimposed on long-term natural variations. Sci Rep 7:7439

    Article  Google Scholar 

  • García-Alix A, Jiménez-Espejo FJ, Jiménez-Moreno G et al (2018) Holocene geochemical footprint from Semi-arid alpine wetlands in southern Spain. Sci Data 5:180024

    Google Scholar 

  • García-Alix A, Toney JL, Jiménez-Moreno G et al (2020) Algal lipids reveal unprecedent warming rates in alpine areas of SW Europe during the Industrial Period. Clim past 16:245–263

    Article  Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2008) Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model. Ecol Model 213:345–355

    Article  Google Scholar 

  • Heegaard E, Birks HJB, Telford RJ (2005) Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15:612–618

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. In: Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA

    Google Scholar 

  • Jalut G, Dedoubat JJ, Fontugne M, Otto T (2009) Holocene circum-Mediterranean vegetation changes: climate forcing and human impact. Quat Inter 200:4–18

    Article  Google Scholar 

  • Jiménez-Espejo FJ, García-Alix A, Jiménez-Moreno G et al (2014) Saharan aeolian input and effective humidity variations over Western Europe during the Holocene. Chem Geol 374–375:1–12

    Article  Google Scholar 

  • Jiménez-Moreno G, Anderson RS (2012) Holocene vegetation and climate change recorded in alpine bog sediments from the Borreguiles de la Virgen, Sierra Nevada, southern Spain. Quat Res 77:44–53

    Article  Google Scholar 

  • Jiménez-Moreno G, García-Alix A, Hernández-Corbalán MD et al (2013) Vegetation, fire, climate and human disturbance history in the southwestern Mediterranean area during the late Holocene. Quat Res 79:110–122

    Article  Google Scholar 

  • Jiménez-Moreno G, Rodríguez-Ramírez A, Pérez-Asensio JN et al (2015) Impact of late-Holocene aridification trend, climate variability and geodynamic control on the environment from a coastal area in SW Spain. Holocene 25:607–617

    Article  Google Scholar 

  • Jiménez-Moreno G, Anderson RS, Ramos-Román MJ et al (2020) The Holocene Cedrus pollen record from Sierra Nevada (S Spain), a proxy for climate change in N Africa. Quat Sci Rev 242:106468

    Google Scholar 

  • Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard  B (2004) A long term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. Nor 428:261–285

    Google Scholar 

  • Linstädter A, Zielhofer C (2010) Regional fire history shows abrupt responses of Mediterranean ecosystems to centennial-scale climate change (Olea–Pistacia woodlands), NE Morocco. J Arid Environ 74:101–110

    Article  Google Scholar 

  • Löwemark L, Chen H-F, Yang T-N et al (2011) Normalizing XRF- scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes. J Asian Earth Sci 40:1250–1256

    Article  Google Scholar 

  • Malanson GP, Resler LM, Butler DR, Fagre DB (2019) Mountain plant communities: uncertain sentinels? Prog Phys Geogr 43:521–543

    Article  Google Scholar 

  • Manzano S, Carrión JS, López-Merino L et al (2019) A palaeoecological approach to understanding the past and present of Sierra Nevada, a Southwestern European biodiversity hotspot. Global Planet Change 175:238–250

    Article  Google Scholar 

  • Martín-Puertas C, Valero-Garcés BL, Brauer A et al (2009) The Iberian-Roman Humid Period (2600–1600 cal yr BP) in the Zoñar lake varve record (Andalucía, southern Spain). Quat Res 71:108–120

    Article  Google Scholar 

  • Martínez-Ruiz F, Kastner M, Gallego-Torres D et al (2015) Paleoclimate and paleoceanography over the past 20,000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies. Quat Sci Rev 107:25–46

    Article  Google Scholar 

  • Mesa-Fernández JM, Jiménez-Moreno G, Rodrigo-Gámiz M et al (2018) Vegetation and geochemical response to Holocene rapid climate change in the Sierra Nevada (southeastern Iberia): the Laguna Hondera record. Clim past 14:1687–1706

    Article  Google Scholar 

  • Meijer PTh, Tuenter E (2007) The effect of precession-induced changes in the Mediterranean freshwater budget on circulation at shallow and intermediate depth. J Mar Sys 68:349–36

    Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 113:289–302

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments, vol 2. Kluwer, Dordrecht, pp 239–270

    Chapter  Google Scholar 

  • Moreno A, Pérez A, Frigola J et al (2012) The Medieval Climate Anomaly in the Iberian Peninsula reconstructed from marine and lake records. Quat Sci Rev 42:16–32

    Article  Google Scholar 

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336

    Article  Google Scholar 

  • Oliva M, Gómez-Ortiz A, Palacios D et al (2020) Multiproxy reconstruction of Holocene glaciers in Sierra Nevada (south Spain). Med Geos Rev 2:5–19

    Article  Google Scholar 

  • Palacios D, Gómez-Ortiz A, Andrés N et al (2016) Timing and new geomorphologic evidence of the last deglaciation stages in Sierra Nevada (southern Spain). Quat Sci Rev 150:110–129

    Article  Google Scholar 

  • Páscoa P, Gouveia CM, Russo A, Trigo RM (2017) Drought trends in the Iberian Peninsula over the last 112 years. Adv Meteorol 2017:4653126

    Article  Google Scholar 

  • Pausas JG, Fernández-Muñoz S (2012) Fire regime changes in the western Mediterranean basin: from fuel limited to drought-driven fire regime. Clim Change 110:215–226

    Article  Google Scholar 

  • Ramos-Román MJ, Jiménez-Moreno G, Anderson RS (2016) Centennial-scale vegetation and North Atlantic Oscillation changes during the late Holocene in the western Mediterranean. Quat Sci Rev 143:84–95

    Article  Google Scholar 

  • Ramos-Román MJ, Jiménez-Moreno G, Camuera J et al (2018a) Holocene climate aridification trend and human impact interrupted by millennial and centennial-scale climate fluctuations from a new sedimentary record from Padul (Sierra Nevada, southern Iberian Peninsula). Clim past 14:117–137

    Article  Google Scholar 

  • Ramos-Román MJ, Jiménez-Moreno G, Camuera J (2018b) Millennial-scale cyclical environment and climate variability during the Holocene in the western Mediterranean region deduced from a new multiproxy analysis from the Padul record (Sierra Nevada, Spain). Global Planet Change 168:35–53

    Article  Google Scholar 

  • Ramos-Román MJ, Jiménez-Moreno G, Anderson RS et al (2019) Climate controlled historic olive tree occurrences and olive oil production in southern Spain. Global Planet Change 182:102996

    Google Scholar 

  • Reille M (1992) Pollen et Spores d'Europe et Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille

    Google Scholar 

  • Reimer PJ, Bard E, Bayliss A et al (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55:1869–1887

    Article  Google Scholar 

  • Renssen H, Brovkin V, Fichefet T, Goosse H (2003) Holocene climate instability during the termination of the African Humid Period. Geophys Res Lett 30:1184

    Article  Google Scholar 

  • Rodrigo-Gámiz M, Martínez-Ruiz F, Jiménez-Espejo FJ et al (2011) Impact of climate variability in the western Mediterranean during the last 20,000 years: oceanic and atmospheric responses. Quat Sci Rev 30:2018–2034

    Article  Google Scholar 

  • Snowball I, Sandgren P (2001) Application of mineral magnetic techniques to paleolimnology. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments, vol 2. Kluwer Academic Publishers, Dordrecht, pp 217–237

    Google Scholar 

  • Sousa PM, Trigo RM, Pereira MG et al (2015) Different approaches to model future burnt area in the Iberian Peninsula. Agric for Meteorol 202:11–25

    Article  Google Scholar 

  • Sousa PM, Barriopedro D, Ramos AM et al (2019) Saharan air intrusions as a relevant mechanism for Iberian heatwaves: the record breaking events of August 2018 and June 2019. Weather Clim Extr 26:100224

    Google Scholar 

  • Talbot MR (2001) Nitrogen isotopes in palaeolimnology. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments: physical and chemical techniques. Kluwer, Dordrecht, pp 401–439

    Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB et al (2005) Climate change threats to plant diversity in Europe. PNAS 102:8245–8250

    Article  Google Scholar 

  • Toney JL, García-Alix A, Jiménez-Moreno G et al (2020) New insights into Holocene hydrology and temperature from lipid biomarkers in western Mediterranean alpine wetlands. Quat Sci Rev 240:106395

    Google Scholar 

  • Trouet V, Esper J, Graham NE et al (2009) Persistent positive north Atlantic oscillation mode dominated the Medieval climate anomaly. Science 324:78–80

    Article  Google Scholar 

  • Tuenter E, Weber SL, Hilgen FJ, Lourens LJ (2003) The response of the African summer monsoon to remote and local forcing due to precession and obliquity. Glob Planet Change 36:219–235

    Article  Google Scholar 

  • Webster CE (2018) Late-Pleistocene and Holocene record of fire at Padul peat bog (Granada, Spain). MS Dissertation, Northern Arizona University

    Google Scholar 

  • Whitlock C, Anderson RS (2003) Fire history reconstructions based on sediment records from lakes and wetlands. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the Americas, vol 160. Springer, New York, pp 3–31

    Chapter  Google Scholar 

  • Wolfe BB, Edwards TWD, Beuning KRM, Elgood RJ (2001) Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediments: physical and chemical techniques. Kluwer, Dordrecht, pp 373–400

    Google Scholar 

  • Zielhofer C, Köhler A, Mischke S et al (2019) Western Mediterranean hydro-climatic consequences of Holocene ice-rafted debris (Bond) events. Clim past 15:463–475

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by projects CGL2013-47038-R and CGL2017-85415-R funded by Ministerio de Economía y Competitividad of Spain and Fondo Europeo de Desarrollo Regional FEDER; Séneca Project 20788/PI/18; Junta de Andalucía I+D+i Junta de Andalucía 2020 Retos P-20-00059, FEDER Project B-RNM-144-UGR18, UGR-FEDER B-RNM-144-UGR18 Proyectos I + D + i del Programa Operativo FEDER 2018 and the research group RNM-190 (Junta de Andalucía). M.J.R.R. acknowledges the postdoctoral funding provided by the European Commission/H2020 (ERC-2017-ADG, project number 788616). J.C. acknowledges the postdoctoral funding provided by the Academy of Finland (project number 316702). A.G.-A. acknowledges the Ramón y Cajal fellowship RYC-2015-18966 provided by the Ministerio de Economía y Competitividad of the Spanish Government. M.R.G. acknowledges funding by the Juan de la Cierva-Incorporación program in the University of Granada (IJCI-2017-33755) from Secretaría de Estado de I+D+i, Spain. RSA acknowledges several travel grants from Northern Arizona University to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Jiménez-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiménez-Moreno, G. et al. (2022). Reconstruction of Past Environment and Climate Using Wetland Sediment Records from the Sierra Nevada. In: Zamora, R., Oliva, M. (eds) The Landscape of the Sierra Nevada. Springer, Cham. https://doi.org/10.1007/978-3-030-94219-9_7

Download citation

Publish with us

Policies and ethics