Skip to main content

Classification of RASAT Satellite Images Using Machine Learning Algorithms

  • Conference paper
  • First Online:
Innovations in Smart Cities Applications Volume 5 (SCA 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 393))

  • 1367 Accesses

Abstract

The development in the remote sensing and geographic information systems facilitated the monitoring processes of changes in land cover and use. This article aimed to evaluate the classification accuracy of five supervised classification methods: Neural Network, Naive Bayes, K-nearest neighbors, discriminant analysis and Decision Tree using the Turkish RASAT satellite images. The Bursa area in Turkey was taken as a study area to examine the RASAT satellite images. MATLAB and Python programming languages were employed to develop the training dataset and generated the five classifiers. According to the performance analysis using confusion matrix metric, the best overall accuracy was achieved by K-nearest neighbors. the K-nearest neighbors method produced 100% performance accuracy using RASAT satellite image. This comparative analysis showed that the K-nearest neighbors can be used as a trusted method for satellite image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. M.A. ƖztĆ¼rk, A.R. Mermut, A. Celik, Urbanisation (Land Degradation, and Environment. Daya Publishing House, Land Use, 2013)

    Google ScholarĀ 

  2. S. Reis, Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors 8(10), 6188ā€“6202 (2008)

    ArticleĀ  Google ScholarĀ 

  3. N.S. Kaya, I.D. Turan, Determination of CORINE land cover/land use classes using satellite images with different spatial resolution. TĆ¼rkiye Tarımsal Araştırmalar Derg. 7(2), 207ā€“218 (2020)

    Google ScholarĀ 

  4. A. Gregrio, J. Jansen, Land Cover Classification System (LCCS); Classification concepts and user manual for software version 2, (2000)

    Google ScholarĀ 

  5. O. Rozenstein, A. Karnieli, Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 31(2), 533ā€“544 (2011)

    ArticleĀ  Google ScholarĀ 

  6. A. Karlsson, Classification of High Resolution Satellite Images, (2003)

    Google ScholarĀ 

  7. A. Briney, An Overview of Remote Sensing, Thoughtco (2019), https://www.thoughtco.com/an-overview-of-remote-sensing-1434624. Accessed 30 June 2021

  8. C.M. Viana, I. GirĆ£o, J. Rocha, Long-term satellite image time-series for land use/land cover change detection using refined open source data in a rural region, Remote Sens. 11(9), 1104 (2019). https://doi.org/10.3390/rs11091104

  9. T. Kavzoğlu, Ä° Ƈƶlkesen, Destek vektƶr makineleri ile uydu gƶrĆ¼ntĆ¼lerinin sınıflandırılmasında kernel fonksiyonlarının etkilerinin incelenmesi. Harit. Derg. 144(7), 73ā€“82 (2010)

    Google ScholarĀ 

  10. S. Shekhar, P. Zhang, Y. Huang, Spatial data mining BT - data mining and knowledge discovery handbook, in O. Maimon, L. Rokach, (Eds.). Springer US, Boston, (2005), pp. 833ā€“851.

    Google ScholarĀ 

  11. S.-H. Liao, P.-H. Chu, P.-Y. Hsiao, Data mining techniques and applications ā€“ a decade review from 2000 to 2011. Expert Syst. Appl. 39(12), 11303ā€“11311 (2012). https://doi.org/10.1016/j.eswa.2012.02.063

    ArticleĀ  Google ScholarĀ 

  12. S.K.M. Abujayyab, I.R. Karaş, Geospatial machine learning datasets structuring and classification tool: case study for mapping LULC from Rasat satellite images, Int. Arch. Photogrammetry, Remote Sens. Spat. Inform. Sci. - ISPRS Arch. 42(4/W16), (2019). https://doi.org/10.5194/isprs-archives-XLII-4-W16-39-2019

  13. S.K.M. Abujayyab, M.S.S. Ahamad, A.S. Yahya, S.Z. Ahmad, H.A. Aziz, Automating an integrated spatial data-mining model for landfill site selection, in AIP Conference Proceedings, 1892, (2017). https://doi.org/10.1063/1.5005757

  14. S.K.M. Abujayyab, Ä°.R. Karaş, Automated prediction system for vegetation cover based on Modis-NDVI satellite data and neural networks, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XLII-4/W19, 9ā€“15, (2019). https://doi.org/10.5194/isprs-archives-XLII-4-W19-9-2019

  15. C.T. Pertille, F.D.D.A. Miranda, L.R. Topanotti, Automatic classification in landsat images for the mapping of OtacĆ­lio Costaā€“SC. Adv. For. Sci. 5(4), 473ā€“478 (2018)

    Google ScholarĀ 

  16. D. GĆ¼lƧin, Arazi Kullanımlarının Sınıflandırılmasında Piksel ve Obje Tabanlı Sınıflandırmanın Karşılaştırılması, Adnan Menderes Ɯniversitesi Ziraat FakĆ¼ltesi Derg., 15(2), 43ā€“49 (2018). https://doi.org/10.25308/aduziraat.423782

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohaib K. M. Abujayyab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abujayyab, S.K.M., YĆ¼cer, E., Karas, I.R., Gultekin, I.H., Abali, O., Bektas, A.G. (2022). Classification of RASAT Satellite Images Using Machine Learning Algorithms. In: Ben Ahmed, M., Boudhir, A.A., Karaș, Ä°.R., Jain, V., Mellouli, S. (eds) Innovations in Smart Cities Applications Volume 5. SCA 2021. Lecture Notes in Networks and Systems, vol 393. Springer, Cham. https://doi.org/10.1007/978-3-030-94191-8_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94191-8_70

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94190-1

  • Online ISBN: 978-3-030-94191-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics