Abstract
The development in the remote sensing and geographic information systems facilitated the monitoring processes of changes in land cover and use. This article aimed to evaluate the classification accuracy of five supervised classification methods: Neural Network, Naive Bayes, K-nearest neighbors, discriminant analysis and Decision Tree using the Turkish RASAT satellite images. The Bursa area in Turkey was taken as a study area to examine the RASAT satellite images. MATLAB and Python programming languages were employed to develop the training dataset and generated the five classifiers. According to the performance analysis using confusion matrix metric, the best overall accuracy was achieved by K-nearest neighbors. the K-nearest neighbors method produced 100% performance accuracy using RASAT satellite image. This comparative analysis showed that the K-nearest neighbors can be used as a trusted method for satellite image classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
M.A. ĆztĆ¼rk, A.R. Mermut, A. Celik, Urbanisation (Land Degradation, and Environment. Daya Publishing House, Land Use, 2013)
S. Reis, Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors 8(10), 6188ā6202 (2008)
N.S. Kaya, I.D. Turan, Determination of CORINE land cover/land use classes using satellite images with different spatial resolution. TĆ¼rkiye Tarımsal AraÅtırmalar Derg. 7(2), 207ā218 (2020)
A. Gregrio, J. Jansen, Land Cover Classification System (LCCS); Classification concepts and user manual for software version 2, (2000)
O. Rozenstein, A. Karnieli, Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. Appl. Geogr. 31(2), 533ā544 (2011)
A. Karlsson, Classification of High Resolution Satellite Images, (2003)
A. Briney, An Overview of Remote Sensing, Thoughtco (2019), https://www.thoughtco.com/an-overview-of-remote-sensing-1434624. Accessed 30 June 2021
C.M. Viana, I. GirĆ£o, J. Rocha, Long-term satellite image time-series for land use/land cover change detection using refined open source data in a rural region, Remote Sens. 11(9), 1104 (2019). https://doi.org/10.3390/rs11091104
T. KavzoÄlu, Ä° Ćƶlkesen, Destek vektƶr makineleri ile uydu gƶrĆ¼ntĆ¼lerinin sınıflandırılmasında kernel fonksiyonlarının etkilerinin incelenmesi. Harit. Derg. 144(7), 73ā82 (2010)
S. Shekhar, P. Zhang, Y. Huang, Spatial data mining BT - data mining and knowledge discovery handbook, in O. Maimon, L. Rokach, (Eds.). Springer US, Boston, (2005), pp. 833ā851.
S.-H. Liao, P.-H. Chu, P.-Y. Hsiao, Data mining techniques and applications ā a decade review from 2000 to 2011. Expert Syst. Appl. 39(12), 11303ā11311 (2012). https://doi.org/10.1016/j.eswa.2012.02.063
S.K.M. Abujayyab, I.R. KaraÅ, Geospatial machine learning datasets structuring and classification tool: case study for mapping LULC from Rasat satellite images, Int. Arch. Photogrammetry, Remote Sens. Spat. Inform. Sci. - ISPRS Arch. 42(4/W16), (2019). https://doi.org/10.5194/isprs-archives-XLII-4-W16-39-2019
S.K.M. Abujayyab, M.S.S. Ahamad, A.S. Yahya, S.Z. Ahmad, H.A. Aziz, Automating an integrated spatial data-mining model for landfill site selection, in AIP Conference Proceedings, 1892, (2017). https://doi.org/10.1063/1.5005757
S.K.M. Abujayyab, Ä°.R. KaraÅ, Automated prediction system for vegetation cover based on Modis-NDVI satellite data and neural networks, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XLII-4/W19, 9ā15, (2019). https://doi.org/10.5194/isprs-archives-XLII-4-W19-9-2019
C.T. Pertille, F.D.D.A. Miranda, L.R. Topanotti, Automatic classification in landsat images for the mapping of OtacĆlio CostaāSC. Adv. For. Sci. 5(4), 473ā478 (2018)
D. GĆ¼lƧin, Arazi Kullanımlarının Sınıflandırılmasında Piksel ve Obje Tabanlı Sınıflandırmanın KarÅılaÅtırılması, Adnan Menderes Ćniversitesi Ziraat FakĆ¼ltesi Derg., 15(2), 43ā49 (2018). https://doi.org/10.25308/aduziraat.423782
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Abujayyab, S.K.M., YĆ¼cer, E., Karas, I.R., Gultekin, I.H., Abali, O., Bektas, A.G. (2022). Classification of RASAT Satellite Images Using Machine Learning Algorithms. In: Ben Ahmed, M., Boudhir, A.A., KaraČ, Ä°.R., Jain, V., Mellouli, S. (eds) Innovations in Smart Cities Applications Volume 5. SCA 2021. Lecture Notes in Networks and Systems, vol 393. Springer, Cham. https://doi.org/10.1007/978-3-030-94191-8_70
Download citation
DOI: https://doi.org/10.1007/978-3-030-94191-8_70
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-94190-1
Online ISBN: 978-3-030-94191-8
eBook Packages: EngineeringEngineering (R0)