Skip to main content

Combinatorial Sums and Inversions

  • Chapter
  • First Online:
The Riordan Group and Applications

Abstract

Traditional methods used for solving combinatorial sums (see, e.g., J. Riordan [18] or L. Comtet [1]) are used in R. L. Graham, D. E. Knuth, and O. Patashnik [8], where it is shown how to use the rules of binomial coefficients, Stirling numbers, and so on, for computing combinatorial sums. G. P. Egorychev [3] developed the method known as integral representation of sums. Gosper’s method [7] and the Petkovšek-Wilf-Zeilberger approach [17, 22, 23] are other well-known methods which nowadays are embodied in every system for computer algebra. An interesting method for evaluating combinatorial sums has emerged in the Riordan arrays concept, with significant early contributions due to R. Sprugnoli [19, 20]. As a matter of fact, Riordan arrays correspond to a special application of the method of coefficients that allows one to compute a vast number of combinatorial sums and inversions in a uniform and often very simple way. In particular, R. Sprugnoli showed how to prove with the Riordan array approach almost all identities in H. W. Gould’s book [5]. In this chapter the computation of combinatorial sums and inversions with Riordan arrays is presented in detail. Many other applications of the method can be found in [9, 11,12,13,14,15,16], while other characteristic combinatorial identities in several parameters have been recently studied with a Riordan array approach by A. Luzón, D. Merlini, M. A. Morón and R. Sprugnoli [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Comtet, Advanced Combinatorics (Reidel, Dordrecht, 1974)

    Book  Google Scholar 

  2. C. Corsani, D. Merlini, R. Sprugnoli, Left-inversion of combinatorial sums. Discrete Math. 180(1–3), 107–122 (1998)

    Article  MathSciNet  Google Scholar 

  3. G.P. Egorychev, Integral Representation and the Computation of Combinatorial Sums (trans. H. H. McFadden), vol. 59 (American Mathematical Society, Providence, 1984)

    Google Scholar 

  4. P. Flajolet, R. Sedgewick, Analytic Combinatorics (Cambridge University Press, 2009)

    Google Scholar 

  5. H.W. Gould, Combinatorial Identities, A Standardized Set of Tables Listing 500 Binomial Coefficient Summations (Morgantown W. Va., 1972)

    Google Scholar 

  6. H.W. Gould, Euler’s formula for \(n\)th differences of powers. Am. Math. Mon. 85(6), 450–467 (1978)

    MATH  Google Scholar 

  7. R. Gosper, Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 75(1), 40–42 (1978)

    Article  MathSciNet  Google Scholar 

  8. R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics (Addison-Wesley, New York, 1989)

    MATH  Google Scholar 

  9. T.-X. He, L.W. Shapiro, Row sums and alternating sums of Riordan arrays. Linear Algebra Appl. 507, 77–95 (2016)

    Article  MathSciNet  Google Scholar 

  10. A. Luzón, D. Merlini, M.A. Morón, R. Sprugnoli, Identities induced by Riordan arrays. Linear Algebra Appl. 436, 631–647 (2012)

    Article  MathSciNet  Google Scholar 

  11. D. Merlini, R. Sprugnoli, Arithmetic into geometric progressions through Riordan arrays. Discrete Math. 340(2), 160–174 (2017)

    Article  MathSciNet  Google Scholar 

  12. D. Merlini, R. Sprugnoli, M.C. Verri, The Akiyama-Tanigawa transformation. Integers 5(1), A5 12 pp. (2005)

    Google Scholar 

  13. D. Merlini, R. Sprugnoli, M.C. Verri, Human and constructive proof of combinatorial identities: an example from Romik, in 2005 International Conference on Analysis of Algorithms (2005), pp. 383–391

    Google Scholar 

  14. D. Merlini, R. Sprugnoli, M.C. Verri, Lagrange inversion: when and how. Acta Appl. Math. 94(3), 233–249 (2006)

    Article  MathSciNet  Google Scholar 

  15. D. Merlini, R. Sprugnoli, M.C. Verri, The Cauchy numbers. Discrete Math. 306(16), 1906–1920 (2006)

    Article  MathSciNet  Google Scholar 

  16. D. Merlini, R. Sprugnoli, M.C. Verri, The method of coefficients. Am. Math. Mon. 114(1), 40–57 (2007)

    Article  MathSciNet  Google Scholar 

  17. M. Petkovšek, H.S. Wilf, D. Zeilberger, A=B (AK Peters, Natick, MA, 1996)

    Google Scholar 

  18. J. Riordan, Combinatorial Identities (Wiley, New York, 1968)

    MATH  Google Scholar 

  19. R. Sprugnoli, Riordan arrays and combinatorial sums. Discrete Math. 132, 267–290 (1994)

    Article  MathSciNet  Google Scholar 

  20. R. Sprugnoli, Riordan arrays and the Abel-Gould identity. Discrete Math. 142(1–3), 213–233 (1995)

    Article  MathSciNet  Google Scholar 

  21. K. Von Szily, Über die quadratsummen der binomial coëfficienten. Math. Nat. Ber. Ung. 12, 84–91 (1893)

    Google Scholar 

  22. H.S. Wilf, D. Zeilberger, Rational functions certify combinatorial identities. J. Am. Math. Soc. 3, 147–158 (1990)

    Article  MathSciNet  Google Scholar 

  23. D. Zeilberger, A fast algorithm for proving terminating hypegeometric identites. Discrete Math. 80, 207–211 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Shapiro .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shapiro, L. et al. (2022). Combinatorial Sums and Inversions. In: The Riordan Group and Applications. Springer Monographs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-94151-2_5

Download citation

Publish with us

Policies and ethics