Skip to main content

Conclusion and Future Perspectives

  • Chapter
  • First Online:
Plant and Algae Biomass

Abstract

Rapid industrialization and urbanization the world has experienced caused several consequences that negatively impact life on Earth. Environmental pollution is a severe consequence that threatens the survival of several species and disrupts the balance of ecosystems. Soil, water and air containing organic (e.g. hydrocarbons) and inorganic pollutants (e.g. heavy metals) are dangerous consequences from activities such as industrial ones, mining and farming, among others (Ali et al., 2019; Kurwadkar, 2019; Peuke & Rennenberg, 2005; Tonelli & Tonelli, 2020). When it comes to the use of fossil fuel, global warming is a very dangerous consequence. This kind of fuel, by being burned, generates some gases that are the main cause of global warming (Ramakrishnan, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhamid, S. A., Hussein, A. A., Asker, M. S., El Sayed, O. H., & Mohamed, S. S. (2019). Optimization of culture conditions for biodiesel production from Egyptian isolate Penicillium commune NRC2016. Bulletin of the National Research Centre, 43, 15.

    Google Scholar 

  • Abdullah, B., Muhammad, S. A. F. S., Shokravi, Z., Ismail, S., Kassim, K. A., Mahmood, A. N., & Aziz, M. M. A. (2019). Fourth generation biofuel: A review on risks and mitigation strategies. Renewable and Sustainable Energy Reviews, 107, 37–50.

    Google Scholar 

  • Adenle, A., Haslam, G., & Lee, L. (2013). Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy, 61, 182–195.

    CAS  Google Scholar 

  • Aftab, M. N., Iqbal, I., Riaz, F., Karadag, A., & Tabatabaei, M. (2019). Different pretreatment methods of lignocellulosic biomass for use in biofuel production. In A. E. Abomohra (Ed.), Biomass for bioenergy - recent trends and future challenges, IntechOpen. https://doi.org/10.5772/intechopen.84995

    Chapter  Google Scholar 

  • Alalwan, H. A., Alminshid, A. H., & Aljaafari, H. A. S. (2019). Promising evolution of biofuel generations. Subject review. Renew. Energy Focus, 28, 127–139.

    Google Scholar 

  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019, 1–14.

    Google Scholar 

  • Anwar, M., Rasul, M. G., & Ashwath, N. (2019). The efficacy of multiple-criteria design matrix for biodiesel feedstock selection. Energy Conversion and Management, 198, 111790.

    CAS  Google Scholar 

  • Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T. M. I., Masjuki, H. H., & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews, 16(4), 2070–2093.

    Google Scholar 

  • Bankovic-Ilic, I. B., Starnenkovic, O. S., & Veljkovic, V. B. (2012). Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 16(6), 3621–3647.

    CAS  Google Scholar 

  • Bespalov, V.; Gurova, O. (2021) Development of an integrated approach to the selection of remediation measures and environmental technologies for their implementation. E3S web of conferences 258 08027.

    Google Scholar 

  • Bhandari, S., Poudel, D. K., Marahatha, R., Dawadi, S., Khadayat, K., Phuyal, S., Shrestha, S., Gaire, S., Basnet, K., Khadka, U., & Parajuli, N. (2021). Microbial enzymes used in bioremediation. Journal of Chemistry, 2021, 8849512.

    Google Scholar 

  • Brevik, E. C., Slaughter, L., Singh, B. R., Steffan, J. J., Collier, D., Barnhart, P., & Pereira, P. (2020). Soil and human health: Current status and future needs. Air, Soil and Water Research, 2020.

    Google Scholar 

  • Brock, D., Koder, A., Rabl, H. P., Touraud, D., & Kunz, W. (2020). Optimising the biodiesel production process: Implementation of glycerol derivatives into biofuel formulations and their potential to form hydrofuels. Fuel, 264, 116695.

    CAS  Google Scholar 

  • Chen, L., Debnath, D., Zhong, J., Ferin, K., VanLoocke, A., & Khanna, M. (2021). The economic and environmental costs and benefits of the renewable fuel standard. Environmental Research Letters, 16(3), 034021.

    Google Scholar 

  • Chia, S. R., Chew, K. W., Show, P. L., Yap, Y. J., Ong, H. C., Ling, T. C., & Chang, J. S. (2018). Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: A review. Biotechnology Journal, 13(6), e1700618.

    PubMed  Google Scholar 

  • Coh, B. H. H., Ong, H. C., Cheah, M. Y., Chen, W. H., Yu, K. L., & Mahlia, T. M. I. (2019). Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renewable and Sustainable Energy Reviews, 107, 59–74.

    Google Scholar 

  • Curtin, J., McInerney, C., Gallachóir, B. Ó., Hickey, C., & Deeney, P. (2019). Quantifying stranding risk for fossil fuel assets and implications for renewable energy investment: a review of the literature. Renewable and Sustainable Energy Reviews, 116, 109402.

    Google Scholar 

  • Ellison, C. R., Overa, S., & Boldor, D. (2019). Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic. Ultrasonics Sonochemistry, 51, 496–503.

    CAS  PubMed  Google Scholar 

  • Figueroa-Torres, G. M., Pittman, J. K., & Theodoropoulos, C. (2021). Optimisation of microalgal cultivation via nutrient-enhanced strategies: The biorefinery paradigm. Biotechnology for Biofuels, 14, 64.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forster, P. M., Forster, H. I., Evans, M. J., Gidden, M. J., Jones, C. D., Keller, C. A., Lamboll, R. D., Le Quéré, C., Rogelj, J., Rosen, D., Schleussner, C. F., Richardson, T. B., Smith, C. J., & Turnock, S. T. (2020). Current and future global climate impacts resulting from COVID-19. Nature Climate Change, 10, 913–919.

    CAS  Google Scholar 

  • Foteinis, S., Chatzisymeon, E., Litinas, A., & Tsoutsos, T. (2020). Used-cooking-oil biodiesel: Life cycle assessment and comparison with first- and third-generation biofuel. Renewable Energy, 153, 588–600.

    CAS  Google Scholar 

  • Franta, B. (2021). Early oil industry disinformation on global warming. Environmental Politics, 30(4), 663–668.

    Google Scholar 

  • Ganesan, R., Manigandan, S., Samuel, M. S., Shanmuganathan, R., Brindhadevi, K., Chi, N. T. L., Duc, P. A., & Pugazhendhi, A. (2020). A review on prospective production of biofuel from microalgae. Biotechnology Reports, 27, e00509.

    PubMed  PubMed Central  Google Scholar 

  • Ganie, A. S., Bano, S., Khan, N., Sultana, S., Rehman, Z., Rahman, M. M., Sabir, S., Coulon, F., & Khan, M. Z. (2021). Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere, 275, 130065.

    CAS  PubMed  Google Scholar 

  • Gifuni, I., Pollio, A., Safi, C., Marzocchella, A., & Olivieri, G. (2019). Current bottlenecks and challenges of the microalgal biorefinery. Trends in Biotechnology, 37(3), 242–252.

    CAS  PubMed  Google Scholar 

  • Hartley, F., van Seventer, D., Tostão, E., & Arndt, C. (2019). Economic impacts of developing a biofuel industry in Mozambique. Development Southern Africa, 36(2), 233–249.

    Google Scholar 

  • Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2016). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS, 103(30), 11206–11121.

    Google Scholar 

  • Jeswani, H. K., Chilvers, A., & Azapagic, A. (2020). Environmental sustainability of biofuels: A review. Proceedings of The Royal Society A, 476, 2243.

    Google Scholar 

  • Kadir, W. N. A., Lam, M. K., Uemura, Y., Lim, J. W., & Lee, K. T. (2018). Harvesting and pre-treatment of microalgae cultivated in wastewater for biodiesel production: A review. Energy Conversion and Management, 171, 1416–1429.

    CAS  Google Scholar 

  • Khanna, M., Crago, C. L., & Black, M. (2011). Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. Interface Focus, 1(2), 233–247.

    PubMed  PubMed Central  Google Scholar 

  • Kings, A. J., Raj, R. E., Miriam, L. R. M., & Visvanathan, M. A. (2017). Cultivation, extraction and optimization of biodiesel production from potential microalgae Euglena sanguinea using eco-friendly natural catalyst. Energy Conversion and Management, 141, 224–235.

    CAS  Google Scholar 

  • Kumar, K., Gambhir, G., Dass, A., Tripathi, A. K., Singh, A., Jha A. K., Yadava, P., Choudhary, M., & Rakshit, S. (2020). Genetically modified crops: current status and future prospects. Planta. 251(4), 91. https://doi.org/10.1007/s00425-020-03372-8.

  • Kurwadkar, S. (2019). Occurrence and distribution of organic and inorganic pollutants in groundwater. Water Environment Research, 91, 1001–1008.

    CAS  PubMed  Google Scholar 

  • Lee, J. H., Won, H. J., Tran, P. H. N., Lee, S.-m., Kim, H.-Y., & Jung, J. H. (2021). Improving lignocellulosic biofuel production by CRISPR/Cas9-mediated lignin modification in barley. GCB - Bioenergy, 13(4), 742–752.

    CAS  Google Scholar 

  • Li, P., Sakuragi, K., & Makino, H. (2019). Extraction techniques in sustainable biofuel production: A concise review. Fuel Processing Technology, 193, 295–303.

    CAS  Google Scholar 

  • Liu, Z., Ciais, P., Deng, Z., Lei, R., Davis, S. J., Feng, S., Zheng, B., Cui, D., Dou, X., Zhu, B., Guo, R., Ke, P., Sun, T., Lu, C., He, P., Wang, Y., Yue, X., Wang, Y., Lei, Y., … Schellnhuber, H. J. (2020). Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nature Communications, 11, 5172.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malode, S. J., Prabhu, K. K., Mascarenhas, R. J., Shetti, N. P., & Aminabhavi, T. M. (2021). Recent advances and viability in biofuel production. Energy Conversion and Management: X, 10, 100070.

    CAS  Google Scholar 

  • Manabe, S. (2019). Role of greenhouse gas in climate change. Tellus A: Dynamic Meteorology and Oceanography, 71(1), 1620078.

    Google Scholar 

  • Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8, 14.

    PubMed  PubMed Central  Google Scholar 

  • Merlo, S., Gabarrell Durany, X., Pedroso Tonon, A., & Rossi, S. (2021). Marine microalgae contribution to sustainable development. Water, 13, 1373.

    CAS  Google Scholar 

  • Miranda, C. T., de Lima, D. V., Atella, G. C., de Aguiar, P. F., & Azevedo, S. M. (2016). Optimization of nitrogen, phosphorus and salt for lipid accumulation of microalgae: Towards the viability of microalgae biodiesel. Natural Science, 8(12), 557.

    CAS  Google Scholar 

  • Mizik, T., & Gyarmati, G. (2021). Economic and sustainability of biodiesel production—A systematic literature review. Clean Technologies, 3, 19–36.

    Google Scholar 

  • Mohajan, H. K. (2013). Global greenhouse gas emissions and climate change. Lambert Academic Publishing.

    Google Scholar 

  • Mohajan, H. K. (2020). The second industrial revolution has brought modern social and economic developments. Journal of Social Sciences and Humanities, 6, 1–14.

    Google Scholar 

  • Navarro-Pineda, F. S., Ponce-Marbán, D. V., Sacramento-Rivero, J. C., & Barahona-Pérez, L. F. (2017). An economic model for estimating the viability of biodiesel production from Jatropha curcas L. Journal of Chemical Technology and Biotechnology, 92(5), 971–980.

    CAS  Google Scholar 

  • Oh, Y. K., Hwang, K. R., Kim, C., Kim, J. R., & Lee, J. S. (2018). Recent developments and key barriers to advanced biofuels: A short review. Bioresource Technology, 257, 320–333.

    CAS  PubMed  Google Scholar 

  • Onumaegbu, C., Alaswad, A., Rodriguez, C., & Olabi, A. (2019). Modelling and optimization of wet microalgae Scenedesmus quadricauda lipid extraction using microwave pre-treatment method and response surface methodology renew. Energy, 132, 1323–1331.

    CAS  Google Scholar 

  • Panoutsou, C., Germer, S., Karka, P., Papadokostantakis, S., Kroyan, Y., Wojcieszyk, M., Maniatis, K., Marchand, P., & Landalv, I. (2021). Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake. Energy Strategy Reviews, 34, 100633.

    Google Scholar 

  • Peng, L., Kiyoshi, S., & Hisao, M. (2019). Extraction techniques in sustainable biofuel production: A concise review fuel process. Technology, 193, 295–303.

    Google Scholar 

  • Peuke, A. D., & Rennenberg, H. (2005). Phytoremediation. EMBO Reports, 6, 497–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pikula, K., Zakharenko, A., Stratidakis, A., Razgonova, M., Nosyrev, A., Mezhuev, Y., Tsatsakis, A., & Golokhvast, K. (2020). The advances and limitations in biodiesel production: Feedstocks, oil extraction methods, production, and environmental life cycle assessment. Green Chemistry Letters and Reviews, 13(4), 1829099.

    Google Scholar 

  • Piotr, B., Aneta, B. B., Jadwiga, S. E., & Krzysztof ózef, J.J.; Bogdan, D.; James, W.D. (2019). Development of renewable energy sources market and biofuels in the European Union. Journal of Cleaner Production, 228, 467–484.

    Google Scholar 

  • Quesada-Salas, M. C., Delfau-Bonnet, G., Willig, G., Préat, N., Allais, F., & Ioannou, I. (2021). Optimization and comparison of three cell disruption processes on lipid extraction from microalgae. Processes, 9(2), 369.

    CAS  Google Scholar 

  • Quinete, N., & Hauser-Davis, R. A. (2021). Drinking water pollutants may affect the immune system: Concerns regarding COVID-19 health effects. Environmental Science and Pollution Research, 28, 1235–1246.

    CAS  PubMed  Google Scholar 

  • Rahmann, G., & Grimm, D. (2020). Food from 458 m2-calculation for a sustainable, circular, and local land-based and landless food production system. Organic Agriculture, 1–12.

    Google Scholar 

  • Raimi, D. (2020). The greenhouse gas effects of increased US oil and gas production. Energy Transit, 4, 45–56.

    Google Scholar 

  • Ramakrishnan, B. (2015). Three R’s for conservation of natural resources. Bioremediation & Biodegradation, 6(1), 1000e162.

    Google Scholar 

  • Reid, W. V., Ali, M. K., & Field, C. B. (2020). The future of bioenergy. Global Change Biology, 26(1), 274–286.

    PubMed  Google Scholar 

  • Rocha-Meneses, L., Ferreira, J. A., Mushtaq, M., Karimi, S., Orupõld, K., & Kikas, T. (2020). Genetic modification of cereal plants: A strategy to enhance bioethanol yields from agricultural waste. Industrial Crops and Products, 150, 112408.

    CAS  Google Scholar 

  • Kanjilal, B; Saha, S. (2019) Ethical implications of biofuel production and use and its relationship with environment and society.Ethics in Biology, Engineering and Medicine: An International Journal, 10(1), 2019

    Google Scholar 

  • Sajjadi, M., Ahmadpoor, F., Nasrollahzadeh, M., & Ghafuri, H. (2021). Lignin-derived (nano)materials for environmental pollution remediation: Current challenges and future perspectives. International Journal of Biological Macromolecules, 178, 394–423.

    CAS  PubMed  Google Scholar 

  • Sayre, R. (2010). Microalgae: The potential for carbon capture. Bioscience, 60, 722–727.

    Google Scholar 

  • Sewsynker-Sukai, Y., Faloye, F., & Kana, E. B. G. (2017). Artificial neural networks: An efficient tool for modelling and optimization of biofuel production (a mini review). Biotechnology & Biotechnological Equipment, 31(2), 221–235.

    CAS  Google Scholar 

  • Shote, A. S., Betiku, E., & Asere, A. A. (2018). Characteristics of CO and NOx emissions from combustion of transmethylated palm kernel oil-based biodiesel blends in a compression ignition engine. Journal of King Saud University—Engineering Sciences., 2018, 1–6.

    Google Scholar 

  • Singh, D., Sharma, D., Soni, S. L., Sharma, S., Sharma, P. K., & Jhalani, A. (2020). A review on feedstocks, production processes, and yield for different generations of biodiesel. Fuel, 262, 116553.

    CAS  Google Scholar 

  • Solis, C. M. A., San Juan, J. L. G., Mayol, A. P., Sy, C. L., Ubando, A. T., & Culaba, A. B. (2021). A multi-objective life cycle optimization model of an integrated algal biorefinery toward a sustainable circular bioeconomy considering resource recirculation. Energies, 14, 1416.

    Google Scholar 

  • Sovova, H., & Stateva, R. P. (2019). New developments in the modelling of carotenoids extraction from microalgae with supercritical CO2 J. Supercrit. Fluids, 148, 93–103.

    CAS  Google Scholar 

  • Subramaniam, Y., & Masron, T. A. (2021). The impact of economic globalization on biofuel in developing countries. Energy Conversion and Management: X, 10, 100064.

    Google Scholar 

  • Taher, H., Nashef, E., Anvar, N., & Al-Zuhair, S. (2019). Enzymatic production of biodiesel from waste oil in ionic liquid medium. Biofuels, 10(4), 463–472.

    CAS  Google Scholar 

  • Tonelli, F. C. P., & Tonelli, F. M. P. (2020). Concerns and threats of xenobiotics on aquatic ecosystems. In R. A. Bhat, K. R. Hakeem, & N. B. S. Al-Saud (Eds.), Bioremediation and biotechnology Vol 3: Persistent and recalcitrant toxic substances (p. 360). Springer.

    Google Scholar 

  • Ullmann, J., & Grimm, D. (2021). Algae and their potential for a future bioeconomy, landless food production, and the socio-economic impact of an algae industry. Organic Agriculture, 11, 261–267.

    Google Scholar 

  • Valdivia, M., Galan, J. L., Laffarga, J., & Ramos, J. L. (2016). Biofuels 2020: Biorefineries based on lignocellulosic materials. Microbial Biotechnology, 9(5), 585–594.

    PubMed  PubMed Central  Google Scholar 

  • Villarreal, J. V., Burgués, C., & Rösch, C. (2020). Acceptability of genetically engineered algae biofuels in Europe: Opinions of experts and stakeholders. Biotechnology for Biofuels, 13, 92.

    Google Scholar 

  • Vohra, K., Vodonos, A., Schwartz, J., Marais, E. A., Sulprizio, M. P., & Mickley, L. J. (2021). Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environmental Research, 195, 110754.

    CAS  PubMed  Google Scholar 

  • Wang, S., Xu, Y., Lin, Z., Zhang, J., Norbu, N., & Liu, W. (2017). The harm of petroleum-polluted soil and its remediation research. AIP Conference Proceedings, 1864, 020222.

    Google Scholar 

  • Yin, P., Brauer, M., Cohen, A. J., Wang, H., Li, J., Burnett, R. T., Stanaway, J. D., Causey, K., Larson, S., Godwin, W., Frostad, J., Marks, A., Wang, L., Zhou, M., & Murray, C. J. L. (2020). The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990–2017: An analysis for the global burden of disease study 2017. The Lancet - Planetary Health, 4(9), E386–E398.

    PubMed  PubMed Central  Google Scholar 

  • Yin, Z. H., Zhu, L. D., Li, S. X., Hu, T. Y., Chu, R. Y., Mo, F., Hu, D., Liu, C. C., & Li, B. (2020). A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresource Technology, 301.

    Google Scholar 

  • Yusuff, A. S. (2019). Extraction, optimization, and characterization of oil from green microalgae Chlorophyta species. Energ Sources Part A, 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, R.A., Singh, D.V., Tonelli, F.M.P., Hakeem, K.R. (2022). Conclusion and Future Perspectives. In: Plant and Algae Biomass . Springer, Cham. https://doi.org/10.1007/978-3-030-94074-4_9

Download citation

Publish with us

Policies and ethics