Skip to main content

Synthesizing Privacy-Preserving Location Traces Including Co-locations

  • Conference paper
  • First Online:
Data Privacy Management, Cryptocurrencies and Blockchain Technology (DPM 2021, CBT 2021)

Abstract

Location traces are useful for various types of geo-data analysis tasks, and synthesizing location traces is a promising approach to geo-data analysis while protecting user privacy. However, existing location synthesizers do not consider friendship information of users. In particular, a co-location between friends is an important factor for synthesizing more realistic location traces.

In this paper, we propose a novel location synthesizer that generates synthetic traces including co-locations between friends. Our synthesizer models the information about the co-locations by two parameters: friendship probability and co-location count matrix. The friendship probability represents a probability that two users will be a friend, whereas the co-location count matrix comprises a co-location count for each time instant and each location. Our synthesizer also provides DP (Differential Privacy) for training data. We evaluate our synthesizer using the Foursquare dataset. Our experimental results show that our synthesizer preserves the information about co-locations and other statistical information (e.g., population distribution, transition matrix) while providing DP with a reasonable privacy budget (e.g., smaller than 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng, Y., Zhang, L., Xie, X., et al.: Mining interesting locations and travel sequences from GPS trajectories. In: WWW 2009, pp. 791–800 (2009)

    Google Scholar 

  2. Lichman, M., Smyth, P.: Modeling human location data with mixtures of kernel densities. In: KDD 2014, pp. 35–44 (2014)

    Google Scholar 

  3. Bindschaedler, V., Shokri, R.: Synthesizing plausible privacy-preserving location traces. In: IEEE S&P 2016, pp. 546–563. IEEE (2016)

    Google Scholar 

  4. He, X., Cormode, G., Machanavajjhala, A., et al.: DPT: differentially private trajectory synthesis using hierarchical reference systems. PVLDB 8(11), 1154–1165 (2015)

    Google Scholar 

  5. Murakami, T., Hamada, K., Kawamoto, Y., et al.: Privacy-preserving multiple tensor factorization for synthesizing large-scale location traces. PoPETs 2021(2), 5–26 (2021)

    Google Scholar 

  6. Song, L., Kotz, D., Jain, R., et al.: Evaluating next-cell predictors with extensive Wi-Fi mobility data. IEEE T-MC 5(12), 1633–1649 (2006)

    Google Scholar 

  7. Iwata, T., Shimizu, H.: Neural collective graphical models for estimating spatio-temporal population flow from aggregated data. In: AAAI 2019, vol. 33, pp. 3935–3942 (2019)

    Google Scholar 

  8. PWS Cup 2019 (2019). https://www.iwsec.org/pws/2019/cup19_e.html

  9. Yang, D., Qu, B., Yang, J., et al.: Revisiting user mobility and social relationships in LBSNs: a hypergraph embedding approach. In: WWW 2019, pp. 2147–2157 (2019)

    Google Scholar 

  10. Olteanu, A.M., Huguenin, K., Shokri, R., et al.: Quantifying interdependent privacy risks with location data. IEEE T-MC 16(3), 829–842 (2016)

    Google Scholar 

  11. Olteanu, A.-M., Huguenin, K., Shokri, R., Hubaux, J.-P.: Quantifying the effect of co-location information on location privacy. In: De Cristofaro, E., Murdoch, S.J. (eds.) PETS 2014. LNCS, vol. 8555, pp. 184–203. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08506-7_10

    Chapter  Google Scholar 

  12. Dwork, C., Roth, A.: The Algorithmic Foundations of Differential Privacy. Now Publishers (2014)

    Google Scholar 

  13. Olteanu, A.M., Humbert, M., Huguenin, K., et al.: The (co-)location sharing game. PoPETs 2019(2), 5–25 (2019)

    Google Scholar 

  14. Murakami, T., Watanabe, H.: Localization attacks using matrix and tensor factorization. IEEE T-IFS 11(8), 1647–1660 (2016)

    Google Scholar 

  15. Shokri, R., Stronati, M., Song, C., et al.: Membership inference attacks against machine learning models. In: S&P 2017, pp. 3–18 (2017)

    Google Scholar 

  16. Pyrgelis, A., Troncoso, C., De Cristofaro, E.: Knock knock, who’s there? Membership inference on aggregate location data. In: NDSS (2018)

    Google Scholar 

  17. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  18. Sofya, R., Adam, S.: Differentially private analysis of graphs, pp. 543–547. Springer, Heidelberg (2016)

    Google Scholar 

  19. Ninghui, L., Min, L., Dong, S.: Differential Privacy: From Theory to Practice. Morgan & Claypool Publishers (2016)

    Google Scholar 

  20. Dwork, C., Naor, M., Pitassi, T., et al.: Differential privacy under continual observation. In: STOC 2010, pp. 715–724 (2010)

    Google Scholar 

  21. Fang, B.C.M., Wang, K., Chen, R., et al.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. (Csur) 42(4), 1–53 (2010)

    Article  Google Scholar 

  22. Bindschaedler, V., Shokri, R., Gunter, C.A.: Plausible deniability for privacy-preserving data synthesis. VLDB Endow. 10(5) (2017)

    Google Scholar 

  23. Xiao, X., Wang, G., Gehrke, J.: Differential privacy via wavelet transforms. IEEE T-KDE 23(8), 1200–1214 (2010)

    Google Scholar 

  24. FOURSQUARE DEVELOPERS. Venue categories—build with foursquare (2020). https://developer.foursquare.com/docs/build-with-foursquare/categories/. Accessed 25 Oct 2020

  25. Liu, Z., Wang, Y.X., Smola, A.: Fast differentially private matrix factorization. In: RecSys 2015, pp. 171–178 (2015)

    Google Scholar 

  26. Barabási, A.L.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Narita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narita, J., Suganuma, Y., Nishigaki, M., Murakami, T., Ohki, T. (2022). Synthesizing Privacy-Preserving Location Traces Including Co-locations. In: Garcia-Alfaro, J., Muñoz-Tapia, J.L., Navarro-Arribas, G., Soriano, M. (eds) Data Privacy Management, Cryptocurrencies and Blockchain Technology. DPM CBT 2021 2021. Lecture Notes in Computer Science(), vol 13140. Springer, Cham. https://doi.org/10.1007/978-3-030-93944-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93944-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93943-4

  • Online ISBN: 978-3-030-93944-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics