Alonso, O.: The practice of crowdsourcing. Synth. Lect. Inf. Concepts Retr. Serv. 11(1), 1–149 (2019)
MathSciNet
Google Scholar
Arai, S., Mayekawa, S.I.: A comparison of equating methods and linking designs for developing an item pool under item response theory. Behaviormetrika 38(1), 1–16 (2011)
CrossRef
Google Scholar
Aral, N., Oppl, S.: Towards comprehensive technology-supported formative assessment in math education – a literature review. In: ERME Topic Conference on Mathematics Education in the Digital Age (MEDA) (2020)
Google Scholar
Ban, J.C., Hanson, B.A., Wang, T., Yi, Q., Harris, D.J.: A comparative study of on-line pretest item-calibration/scaling methods in computerized adaptive testing. J. Educ. Meas. 38(3), 191–212 (2001)
CrossRef
Google Scholar
Bjorner, J.B., Kosinski, M., Ware, J.E., Jr.: Calibration of an item pool for assessing the burden of headaches: an application of IRT to the headache impact test. Qual. Life Res. 12(8), 913–933 (2003). https://doi.org/10.1023/A:1026163113446
CrossRef
Google Scholar
Brabham, D.C.: Crowdsourcing. MIT Press, Cambridge (2013)
CrossRef
Google Scholar
Brinkhuis, M.J., Maris, G.: Dynamic parameter estimation in student monitoring systems. Measurement and Research Department Reports (Rep. No. 2009-1). Arnhem: Cito 146 (2009)
Google Scholar
Costello, E., et al.: Is it in the bin? Seeking authentic assessment in STEM: ATSSTEM. In: The 38th Pupils’ Attitudes Towards Technology Conference, p. 31 (2021)
Google Scholar
Eggen, T.J., Verschoor, A.J.: Optimal testing with easy or difficult items in computerized adaptive testing. Appl. Psychol. Meas. 30(5), 379–393 (2006)
MathSciNet
CrossRef
Google Scholar
Embretson, S.E., Reise, S.P.: Item Response Theory. Psychology Press, New York (2000). https://www.taylorfrancis.com/books/mono/10.4324/9781410605269/item-response-theory-susan-embretson-steven-reise
Faber, J.M., Luyten, H., Visscher, A.J.: The effects of a digital formative assessment tool on mathematics achievement and student motivation: results of a randomized experiment. Comput. Educ. 106, 83–96 (2017)
CrossRef
Google Scholar
Hohenwarter, M., Fuchs, K.: Combination of dynamic geometry, algebra and calculus in the software system GeoGebra. In: Computer Algebra Systems and Dynamic Geometry Systems in Mathematics Teaching Conference, pp. 1–6 (2004)
Google Scholar
Hohenwarter, M., Hohenwarter, J., Kreis, Y., Lavicza, Z.: Teaching and learning calculus with free dynamic mathematics software GeoGebra. In: 11th International Congress on Mathematical Education (2008)
Google Scholar
Jia, J., Le, H.: The design and implementation of a computerized adaptive testing system for school mathematics based on item response theory. In: Lee, L.K., U, L.H., Wang, F.L., Cheung, S.K.S., Au O., Li, K.C. (eds.) Technology in Education. Innovations for Online Teaching and Learning. ICTE 2020. CCIS, vol. 1302, pp. 100–111 (2020). Springer, Singapore. https://doi.org/10.1007/978-981-33-4594-2_9
Kingsbury, G.G.: Adaptive item calibration: a process for estimating item parameters within a computerized adaptive test. In: Proceedings of the 2009 GMAC Conference on Computerized Adaptive Testing (2009)
Google Scholar
Lavicza, Z.: Factors influencing the integration of computer algebra systems into university-level mathematics education. Int. J Technol. Math. Educ. 14(3), 121 (2007)
Google Scholar
Linacre, J.M.: Computer-adaptive testing: A methodology whose time has come. Technical report, MESA memorandum, Seoul, South Korea (2000)
Google Scholar
van der Linden, W.J., Glas, C.A.: Capitalization on item calibration error in adaptive testing. Appl. Meas. Educ. 13(1), 35–53 (2000)
CrossRef
Google Scholar
van der Linden, W.J., Pashley, P.J.: Item selection and ability estimation in adaptive testing. In: van der Linden, W., Glas, C. (eds.) Elements of Adaptive Testing. Statistics for Social and Behavioral Sciences, pp. 3–30. Springer, New York (2009). https://doi.org/10.1007/978-0-387-85461-8_1
Lord, F., Novick, M.R.: Statistical Theories of Mental Test Scores. Addison-Wesley, Reading (1968)
MATH
Google Scholar
Olsher, S., Yerushalmy, M., Chazan, D.: How might the use of technology in formative assessment support changes in mathematics teaching? Learn. Math. 36(3), 11–18 (2016)
Google Scholar
Oppl, S., Reisinger, F., Eckmaier, A., Helm, C.: A flexible online platform for computerized adaptive testing. Int. J. Educ. Technol. High. Educ. 14(1), 2 (2017). https://doi.org/10.1186/s41239-017-0039-0
CrossRef
Google Scholar
Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manage. Inf. Syst. 24(3), 45–77 (2007)
CrossRef
Google Scholar
Segall, D.O.: Computerized adaptive testing. In: Encyclopedia of Social Measurement (2004)
Google Scholar
Tackett, S., et al.: Crowdsourcing for assessment items to support adaptive learning. Med. Teach. 40(8), 838–841 (2018)
CrossRef
Google Scholar
Veldkamp, B.P., van der Linden, W.J.: Designing item pools for computerized adaptive testing. In: van der Linden, W.J., Glas, G.A. (eds.) Computerized Adaptive Testing: Theory and Practice, pp. 149–162 (2000). Springer, Dordrecht. https://doi.org/10.1007/0-306-47531-6_8
Verschoor, A., Berger, S., Moser, U., Kleintjes, F.: On-the-fly calibration in computerized adaptive testing. In: Theoretical and Practical Advances in Computer-based Educational Measurement, pp. 307–323 (2019)
Google Scholar
Wainer, H., Dorans, N.J., Flaugher, R., Green, B.F., Mislevy, R.J.: Computerized Adaptive Testing: A Primer. Routledge, Abingdon (2000)
CrossRef
Google Scholar
Wiliam, D.: Formative assessment in mathematics part 3: the learner’s role. Equals Math. Spec. Educ. Needs 6(1), 19–22 (2000)
Google Scholar
Zieba, A.: The item information function in one and two-parameter logistic models - a comparison and use in the analysis of the results of school tests. Didactics Math. 10(14), 87–96 (2013)
Google Scholar