Skip to main content

Sport-Related Concussion Guideline Development: Acute Management to Return to Activity

  • Chapter
  • First Online:
Tackling the Concussion Epidemic
  • 645 Accesses

Abstract

The diagnosis, management, and ultimate decision for medical clearance following sport-related concussion are complex and multifactorial. In recent years, for example, we have observed a transition from the conservative prescription of rest following sport-related concussion to the recommendation of early introduction of activities. The chapter begins with a historical contextualization of concussion/mild traumatic brain injury, followed by describing the formalization and evolution of concussion assessment tools. Next, the chapter provides a chronological narrative of the development and advancements of graded return-to-sport guidelines. This section of the chapter will also review the challenges and research opportunities in determining when to initiate activity, at what intensity, duration, and type. The chapter also highlights that activity is not limited to sport participation (i.e., return-to-sport protocols) and that management guidelines have been developed for both school and work settings. The chapter concludes by highlighting that sport-related concussion is a heterogeneous clinical condition and necessitates an interdisciplinary team with concussion expertise in certain situations, irrespective of return-to-activity goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75 Suppl 4:S24–33. https://doi.org/10.1227/NEU.0000000000000505.

    Article  PubMed  Google Scholar 

  2. McCrory PR, Berkovic SF. Concussion: the history of clinical and pathophysiological concepts and misconceptions. Neurology. 2001;57:2283–9. https://doi.org/10.1212/wnl.57.12.2283.

    Article  CAS  PubMed  Google Scholar 

  3. Johnston KM, McCrory P, Mohtadi NG, Meeuwisse W. Evidence-based review of sport-related concussion: clinical science. Clin J Sport Med. 2001;11:150–9. https://doi.org/10.1097/00042752-200107000-00005.

    Article  CAS  PubMed  Google Scholar 

  4. McCrory P. Concussion revisited: a historical perspective. How has the focus on concussions evolved over the years? In: Gagnon I, Ptito A, editors. Sports concussions. Boca Raton: CRC; 2018.

    Google Scholar 

  5. Maroon JC, Steele PB, Berlin R. Football head and neck injuries--an update. Clin Neurosurg. 1980;27:414–29.

    Article  CAS  Google Scholar 

  6. Cantu RC. Head injuries in sport. Br J Sports Med. 1996;30:289–96. https://doi.org/10.1136/bjsm.30.4.289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kelly JP, et al. Concussion in sports. Guidelines for the prevention of catastrophic outcome. JAMA. 1991;266:2867–9. https://doi.org/10.1001/jama.266.20.2867.

    Article  CAS  PubMed  Google Scholar 

  8. Iverson GL, et al. Predictors of clinical recovery from concussion: a systematic review. Br J Sports Med. 2017;51:941–8. https://doi.org/10.1136/bjsports-2017-097729.

    Article  PubMed  Google Scholar 

  9. Practice parameter: the management of concussion in sports (summary statement). Report of the Quality Standards Subcommittee. Neurology. 1997;48:581–5. https://doi.org/10.1212/wnl.48.3.581.

  10. Kelly JP, Rosenberg JH. The development of guidelines for the management of concussion in sports. J Head Trauma Rehabil. 1998;13:53–65. https://doi.org/10.1097/00001199-199804000-00008.

    Article  CAS  PubMed  Google Scholar 

  11. Aubry M, et al. Summary and agreement statement of the First International Conference on Concussion in Sport, Vienna 2001. Recommendations for the improvement of safety and health of athletes who may suffer concussive injuries. Br J Sports Med. 2002;36:6–10. https://doi.org/10.1136/bjsm.36.1.6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McCrory P, et al. Summary and agreement statement of the 2nd International Conference on Concussion in Sport, Prague 2004. Br J Sports Med. 2005;39:196–204. https://doi.org/10.1136/bjsm.2005.018614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McCrory P, et al. Consensus statement on concussion in sport-the 5th international conference on concussion in sport held in Berlin, October 2016. Br J Sport Med. 2017;51:838–47. https://doi.org/10.1136/bjsports-2017-097699.

    Article  Google Scholar 

  14. McCrory P, et al. Consensus statement on Concussion in Sport 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Clin J Sport Med. 2009;19:185–200. https://doi.org/10.1097/JSM.0b013e3181a501db.

    Article  PubMed  Google Scholar 

  15. McCrory P, et al. Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br J Sports Med. 2013;47:250–8. https://doi.org/10.1136/bjsports-2013-092313.

    Article  PubMed  Google Scholar 

  16. Collins MW, et al. Statements of Agreement From the Targeted Evaluation and Active Management (TEAM) approaches to treating concussion meeting held in Pittsburgh, October 15–16, 2015. Neurosurgery. 2016;79:912–29. https://doi.org/10.1227/NEU.0000000000001447.

    Article  PubMed  Google Scholar 

  17. Smith AM, et al. Ice Hockey Summit II: zero tolerance for head hits and fighting. Clin J Sport Med. 2015;25:78–87. https://doi.org/10.1097/JSM.0000000000000195.

    Article  PubMed  Google Scholar 

  18. Smith AM, et al. Proceedings from the ice hockey summit on concussion: a call to action. Clin J Sport Med. 2011;21:281–7. https://doi.org/10.1097/jsm.0b013e318225bc15.

    Article  PubMed  Google Scholar 

  19. Guskiewicz KM, et al. National Athletic Trainers’ Association position statement: management of sport-related concussion. J Athl Train. 2004;39:280–97.

    PubMed  PubMed Central  Google Scholar 

  20. Herring SA, et al. Concussion (mild traumatic brain injury) and the team physician: a consensus statement--2011 update. Med Sci Sports Exerc. 2011;43:2412–22. https://doi.org/10.1249/MSS.0b013e3182342e64.

    Article  PubMed  Google Scholar 

  21. Harmon KG, et al. American Medical Society for Sports Medicine position statement on concussion in sport. Br J Sports Med. 2019;53:213–25. https://doi.org/10.1136/bjsports-2018-100338.

    Article  PubMed  Google Scholar 

  22. Harmon KG, et al. American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med. 2013;47:15–26. https://doi.org/10.1136/bjsports-2012-091941.

    Article  PubMed  Google Scholar 

  23. Giza CC, et al. Summary of evidence-based guideline update: evaluation and management of concussion in sports: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;80:2250–7. https://doi.org/10.1212/WNL.0b013e31828d57dd.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Broglio SP, et al. National Athletic Trainers’ Association position statement: management of sport concussion. J Athl Train. 2014;49:245–65. https://doi.org/10.4085/1062-6050-49.1.07.

    Article  PubMed  PubMed Central  Google Scholar 

  25. McCrea M, et al. Standardized assessment of concussion (SAC): on-site mental status evaluation of the athlete. J Head Trauma Rehabil. 1998;13:27–35. https://doi.org/10.1097/00001199-199804000-00005.

    Article  CAS  PubMed  Google Scholar 

  26. Guskiewicz KM, Ross SE, Marshall SW. Postural stability and neuropsychological deficits after concussion in collegiate athletes. J Athl Train. 2001;36:263–73.

    PubMed  PubMed Central  Google Scholar 

  27. Riemann BL, Guskiewicz KM. Effects of mild head injury on postural stability as measured through clinical balance testing. J Athl Train. 2000;35:19–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Davis GA, et al. The Child Sport Concussion Assessment Tool 5th Edition (Child SCAT5): background and rationale. Br J Sports Med. 2017;51:859–61. https://doi.org/10.1136/bjsports-2017-097492.

    Article  PubMed  Google Scholar 

  29. Echemendia RJ, et al. The Concussion Recognition Tool 5th Edition (CRT5): background and rationale. Br J Sports Med. 2017;51:870–1. https://doi.org/10.1136/bjsports-2017-097508.

    Article  PubMed  Google Scholar 

  30. Carson JD, et al. Premature return to play and return to learn after a sport-related concussion: physician’s chart review. Can Fam Physician. 2014;60(e310):e312–5.

    Google Scholar 

  31. Downey RI, Hutchison MG, Comper P. Determining sensitivity and specificity of the Sport Concussion Assessment Tool 3 (SCAT3) components in university athletes. Brain Inj. 2018;32:1345–52. https://doi.org/10.1080/02699052.2018.1484166.

    Article  PubMed  Google Scholar 

  32. Putukian M, et al. Prospective clinical assessment using Sideline Concussion Assessment Tool-2 testing in the evaluation of sport-related concussion in college athletes. Clin J Sport Med. 2015;25:36–42. https://doi.org/10.1097/JSM.0000000000000102.

    Article  PubMed  Google Scholar 

  33. Olson A, Ellis MJ, Selci E, Russell K. Delayed symptom onset following pediatric sport-related concussion. Front Neurol. 2020;11:220. https://doi.org/10.3389/fneur.2020.00220.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Echemendia RJ, et al. The Sport Concussion Assessment Tool 5th Edition (SCAT5): background and rationale. Br J Sports Med. 2017;51:848–50. https://doi.org/10.1136/bjsports-2017-097506.

    Article  PubMed  Google Scholar 

  35. Asken BM, et al. “Playing through it”: delayed reporting and removal from athletic activity after concussion predicts prolonged recovery. J Athl Train. 2016;51:329–35. https://doi.org/10.4085/1062-6050-51.5.02.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Munia TT, et al. Preliminary results of residual deficits observed in athletes with concussion history: combined EEG and cognitive study. Annu Int Conf IEEE Eng Med Biol Soc. 2016;2016:41–4. https://doi.org/10.1109/EMBC.2016.7590635.

    Article  PubMed  Google Scholar 

  37. Brown JA, Dalecki M, Hughes C, Macpherson AK, Sergio LE. Cognitive-motor integration deficits in young adult athletes following concussion. BMC Sports Sci Med Rehabil. 2015;7:25. https://doi.org/10.1186/s13102-015-0019-4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Comper P, Hutchison M, Magrys S, Mainwaring L, Richards D. Evaluating the methodological quality of sports neuropsychology concussion research: a systematic review. Brain Inj. 2010;24:1257–71. https://doi.org/10.3109/02699052.2010.506854.

    Article  PubMed  Google Scholar 

  39. Echemendia RJ, et al. Testing the hybrid battery approach to evaluating sports-related concussion in the National Hockey League: a factor analytic study. Clin Neuropsychol. 2019:1–20. https://doi.org/10.1080/13854046.2019.1690051.

  40. Kamins J, et al. What is the physiological time to recovery after concussion? A systematic review. Br J Sports Med. 2017;51:935–40. https://doi.org/10.1136/bjsports-2016-097464.

    Article  PubMed  Google Scholar 

  41. Abrahams S, Fie SM, Patricios J, Posthumus M, September AV. Risk factors for sports concussion: an evidence-based systematic review. Br J Sports Med. 2014;48:91–7. https://doi.org/10.1136/bjsports-2013-092734.

    Article  PubMed  Google Scholar 

  42. Signoretti S, Lazzarino G, Tavazzi B, Vagnozzi R. The pathophysiology of concussion. PM R. 2011;3:S359–68. https://doi.org/10.1016/j.pmrj.2011.07.018.

    Article  PubMed  Google Scholar 

  43. Vagnozzi R, et al. Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes--part III. Neurosurgery. 2008;62:1286–95. https://doi.org/10.1227/01.neu.0000333300.34189.74; discussion 1295–1286.

    Article  PubMed  Google Scholar 

  44. Broglio SP, Eckner JT, Paulson HL, Kutcher JS. Cognitive decline and aging: the role of concussive and subconcussive impacts. Exerc Sport Sci Rev. 2012;40:138–44. https://doi.org/10.1097/JES.0b013e3182524273.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gallo V, et al. Concussion and long-term cognitive impairment among professional or elite sport-persons: a systematic review. J Neurol Neurosurg Psychiatry. 2020;91:455–68. https://doi.org/10.1136/jnnp-2019-321170.

    Article  PubMed  Google Scholar 

  46. Hutchison MG, Di Battista AP, McCoskey J, Watling SE. Systematic review of mental health measures associated with concussive and subconcussive head trauma in former athletes. Int J Psychophysiol. 2018;132:55–61. https://doi.org/10.1016/j.ijpsycho.2017.11.006.

    Article  PubMed  Google Scholar 

  47. Halstead ME, Walter KD, Council on Sports, M. & Fitness. American Academy of Pediatrics. Clinical report--sport-related concussion in children and adolescents. Pediatrics. 2010;126:597–615. https://doi.org/10.1542/peds.2010-2005.

    Article  PubMed  Google Scholar 

  48. McCrory P, et al. Consensus statement on concussion in sport: the 3rd International Conference on Concussion in Sport held in Zurich, November 2008. Br J Sports Med. 2009;43 Suppl 1:i76–90. https://doi.org/10.1136/bjsm.2009.058248.

    Article  CAS  PubMed  Google Scholar 

  49. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10:1387–94. https://doi.org/10.1038/nn1997.

    Article  CAS  PubMed  Google Scholar 

  50. Silverberg ND, Iverson GL. Is rest after concussion “the best medicine?”: recommendations for activity resumption following concussion in athletes, civilians, and military service members. J Head Trauma Rehabil. 2013;28:250–9. https://doi.org/10.1097/HTR.0b013e31825ad658.

    Article  PubMed  Google Scholar 

  51. Winkelman C. Bed rest in health and critical illness: a body systems approach. AACN Adv Crit Care. 2009;20:254–66. https://doi.org/10.1097/NCI.0b013e3181ac838d.

    Article  PubMed  Google Scholar 

  52. Leddy J, Hinds A, Sirica D, Willer B. The role of controlled exercise in concussion management. PM R. 2016;8:S91–S100. https://doi.org/10.1016/j.pmrj.2015.10.017.

    Article  PubMed  Google Scholar 

  53. Alla S, Sullivan SJ, McCrory P, Schneiders AG, Handcock P. Does exercise evoke neurological symptoms in healthy subjects? J Sci Med Sport. 2010;13:24–6. https://doi.org/10.1016/j.jsams.2008.12.629.

    Article  PubMed  Google Scholar 

  54. Gaetz MB, Iverson GL. Sex differences in self-reported symptoms after aerobic exercise in non-injured athletes: implications for concussion management programmes. Br J Sports Med. 2009;43:508–13. https://doi.org/10.1136/bjsm.2008.051748.

    Article  CAS  PubMed  Google Scholar 

  55. Iverson GL, Lange RT. Examination of “postconcussion-like” symptoms in a healthy sample. Appl Neuropsychol. 2003;10:137–44. https://doi.org/10.1207/S15324826AN1003_02.

    Article  PubMed  Google Scholar 

  56. Cook NE, et al. Baseline cognitive test performance and concussion-like symptoms among adolescent athletes with ADHD: examining differences based on medication use. Clin Neuropsychol. 2017;31:1341–52. https://doi.org/10.1080/13854046.2017.1317031.

    Article  PubMed  Google Scholar 

  57. Cottle JE, Hall EE, Patel K, Barnes KP, Ketcham CJ. Concussion baseline testing: preexisting factors, symptoms, and neurocognitive performance. J Athl Train. 2017;52:77–81. https://doi.org/10.4085/1062-6050-51.12.21.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Covassin T, Elbin RJ 3rd, Larson E, Kontos AP. Sex and age differences in depression and baseline sport-related concussion neurocognitive performance and symptoms. Clin J Sport Med. 2012;22:98–104. https://doi.org/10.1097/JSM.0b013e31823403d2.

    Article  PubMed  Google Scholar 

  59. Covassin T, et al. Sex differences in baseline neuropsychological function and concussion symptoms of collegiate athletes. Br J Sports Med. 2006;40:923–7. https://doi.org/10.1136/bjsm.2006.029496; discussion 927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hunt AW, Paniccia M, Reed N, Keightley M. Concussion-like symptoms in child and youth athletes at baseline: what is “typical”? J Athl Train. 2016;51:749–57. https://doi.org/10.4085/1062-6050-51.11.12.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hurtubise JM, Hughes CE, Sergio LE, Macpherson AK. Comparison of baseline and postconcussion SCAT3 scores and symptoms in varsity athletes: an investigation into differences by sex and history of concussion. BMJ Open Sport Exerc Med. 2018;4:e000312. https://doi.org/10.1136/bmjsem-2017-000312.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mihalik JP, et al. The effects of sleep quality and sleep quantity on concussion baseline assessment. Clin J Sport Med. 2013;23:343–8. https://doi.org/10.1097/JSM.0b013e318295a834.

    Article  PubMed  Google Scholar 

  63. Mrazik M, Naidu D, Lebrun C, Game A, Matthews-White J. Does an individual’s fitness level affect baseline concussion symptoms? J Athl Train. 2013;48:654–8. https://doi.org/10.4085/1062-6050-48.3.19.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Silverberg ND, Berkner PD, Atkins JE, Zafonte R, Iverson GL. Relationship between short sleep duration and preseason concussion testing. Clin J Sport Med. 2016;26:226–31. https://doi.org/10.1097/JSM.0000000000000241.

    Article  PubMed  Google Scholar 

  65. Kontos AP, et al. A revised factor structure for the post-concussion symptom scale: baseline and postconcussion factors. Am J Sports Med. 2012;40:2375–84. https://doi.org/10.1177/0363546512455400.

    Article  PubMed  Google Scholar 

  66. Schneider KJ, et al. Rest and treatment/rehabilitation following sport-related concussion: a systematic review. Br J Sports Med. 2017;51:930–4. https://doi.org/10.1136/bjsports-2016-097475.

    Article  PubMed  Google Scholar 

  67. Colcombe SJ, Kramer AF, McAuley E, Erickson KI, Scalf P. Neurocognitive aging and cardiovascular fitness: recent findings and future directions. J Mol Neurosci. 2004;24:9–14. https://doi.org/10.1385/JMN:24:1:009.

    Article  CAS  PubMed  Google Scholar 

  68. Griesbach GS, Hovda DA, Molteni R, Wu A, Gomez-Pinilla F. Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience. 2004;125:129–39. https://doi.org/10.1016/j.neuroscience.2004.01.030.

    Article  CAS  PubMed  Google Scholar 

  69. Neeper SA, Gomez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature. 1995;373:109. https://doi.org/10.1038/373109a0.

    Article  CAS  PubMed  Google Scholar 

  70. Lawrence DW, Richards D, Comper P, Hutchison MG. Earlier time to aerobic exercise is associated with faster recovery following acute sport concussion. PLoS One. 2018;13:e0196062. https://doi.org/10.1371/journal.pone.0196062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leddy JJ, Haider MN, Hinds AL, Darling S, Willer BS. A preliminary study of the effect of early aerobic exercise treatment for sport-related concussion in males. Clin J Sport Med. 2019;29:353–60. https://doi.org/10.1097/JSM.0000000000000663.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Willer BS, et al. Comparison of rest to aerobic exercise and placebo-like treatment of acute sport-related concussion in male and female adolescents. Arch Phys Med Rehabil. 2019;100(12):2267–75. https://doi.org/10.1016/j.apmr.2019.07.003.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Micay R, Richards D, Hutchison MG. Feasibility of a postacute structured aerobic exercise intervention following sport concussion in symptomatic adolescents: a randomised controlled study. BMJ Open Sport Exerc Med. 2018;4:e000404. https://doi.org/10.1136/bmjsem-2018-000404.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Leddy JJ, et al. Early subthreshold aerobic exercise for sport-related concussion: a randomized clinical trial. JAMA Pediatr. 2019;173:319–25. https://doi.org/10.1001/jamapediatrics.2018.4397.

    Article  PubMed  PubMed Central  Google Scholar 

  75. McCrory P. Summary and agreement statement of the 2nd International Conference on Concussion in Sport, Prague 2004. Br J Sport Med. 2005;39:i78–86. https://doi.org/10.1136/bjsm.2005.018614.

    Article  Google Scholar 

  76. Buttner F, et al. Concussed athletes walk slower than non-concussed athletes during cognitive-motor dual-task assessments but not during single-task assessments 2 months after sports concussion: a systematic review and meta-analysis using individual participant data. Br J Sports Med. 2020;54:94–101. https://doi.org/10.1136/bjsports-2018-100164.

    Article  PubMed  Google Scholar 

  77. Dorman JC, et al. Tracking postural stability of young concussion patients using dual-task interference. J Sci Med Sport. 2015;18:2–7. https://doi.org/10.1016/j.jsams.2013.11.010.

    Article  PubMed  Google Scholar 

  78. Fino PC, et al. Detecting gait abnormalities after concussion or mild traumatic brain injury: a systematic review of single-task, dual-task, and complex gait. Gait Posture. 2018;62:157–66. https://doi.org/10.1016/j.gaitpost.2018.03.021.

    Article  PubMed  Google Scholar 

  79. Gioia G. Return to school: when and how should return to school be organized after a concussion? In: Gagnon I, Ptito A, editors. Sports concussions. Boca Raton: CRC; 2018.

    Google Scholar 

  80. Baker JG, Willer BS, Leddy JJ. Integrating neuropsychology services in a multidisciplinary concussion clinic. J Head Trauma Rehabil. 2019;34:419–24. https://doi.org/10.1097/HTR.0000000000000541.

    Article  PubMed  Google Scholar 

  81. McGrath N. Supporting the student-athlete’s return to the classroom after a sport-related concussion. J Athl Train. 2010;45:492–8. https://doi.org/10.4085/1062-6050-45.5.492.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sady MD, Vaughan CG, Gioia GA. School and the concussed youth: recommendations for concussion education and management. Phys Med Rehabil Clin N Am. 2011;22:701–19. https://doi.org/10.1016/j.pmr.2011.08.008, ix.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Purcell L, Kissick J, Rizos J, Canadian Concussion, C. Concussion. CMAJ. 2013;185:981. https://doi.org/10.1503/cmaj.120511.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Davis GA, et al. What is the difference in concussion management in children as compared with adults? A systematic review. Br J Sports Med. 2017;51:949–57. https://doi.org/10.1136/bjsports-2016-097415.

    Article  PubMed  Google Scholar 

  85. Gioia GA. Medical-School partnership in guiding return to school following mild traumatic brain injury in youth. J Child Neurol. 2016;31:93–108. https://doi.org/10.1177/0883073814555604.

    Article  PubMed  Google Scholar 

  86. Iverson GL, Gioia GA. Returning to school following sport-related concussion. Phys Med Rehabil Clin N Am. 2016;27:429–36. https://doi.org/10.1016/j.pmr.2015.12.002.

    Article  PubMed  Google Scholar 

  87. DeMatteo C, et al. Post-concussion return to play and return to school guidelines for children and youth: a scoping methodology. Disabil Rehabil. 2015;37:1107–12. https://doi.org/10.3109/09638288.2014.952452.

    Article  PubMed  Google Scholar 

  88. Choe MC, et al. A multicenter look at multidisciplinary youth concussion/mild traumatic brain injury programs: the Four Corners Youth Consortium (4CYC). Pediatr Neurol. 2020;107:84–5. https://doi.org/10.1016/j.pediatrneurol.2020.01.008.

    Article  PubMed  Google Scholar 

  89. Gioia GA. Multimodal evaluation and management of children with concussion: using our heads and available evidence. Brain Inj. 2015;29:195–206. https://doi.org/10.3109/02699052.2014.965210.

    Article  PubMed  Google Scholar 

  90. Purcell LK, Davis GA, Gioia GA. What factors must be considered in ‘return to school’ following concussion and what strategies or accommodations should be followed? A systematic review. Br J Sports Med. 2019;53:250. https://doi.org/10.1136/bjsports-2017-097853.

    Article  PubMed  Google Scholar 

  91. Sojka P. “Sport” and “non-sport” concussions. CMAJ. 2011;183:887–8. https://doi.org/10.1503/cmaj.110504.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bloom B, et al. A systematic review and meta-analysis of return to work after mild traumatic brain injury. Brain Inj. 2018;32:1623–36. https://doi.org/10.1080/02699052.2018.1532111.

    Article  PubMed  Google Scholar 

  93. Guideline for concussion/mild traumatic brain injury and prolonged symptoms. 3rd ed. (for Adults 18+ years of age). Ontario: Neurotrauma Foundation; 2021. Retrieved from: https://braininjuryguidelines.org/concussion/.

  94. Lumba-Brown A, et al. Representation of concussion subtypes in common postconcussion symptom-rating scales. Concussion. 2019;4:CNC65. https://doi.org/10.2217/cnc-2019-0005.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lumba-Brown A, et al. Concussion guidelines step 2: evidence for subtype classification. Neurosurgery. 2020;86:2–13. https://doi.org/10.1093/neuros/nyz332.

    Article  PubMed  Google Scholar 

  96. Davis G, Commentary A. Concussion guidelines step 2: evidence for subtype classification. Neurosurgery. 2020;86:E222–3. https://doi.org/10.1093/neuros/nyz364.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Hutchison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hutchison, M.G. (2022). Sport-Related Concussion Guideline Development: Acute Management to Return to Activity. In: Schweizer, T.A., Baker, A.J. (eds) Tackling the Concussion Epidemic. Springer, Cham. https://doi.org/10.1007/978-3-030-93813-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93813-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93812-3

  • Online ISBN: 978-3-030-93813-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics