Skip to main content

The Path Toward a Blood Test for Concussion: A Review of Biofluid Biomarkers for Concussive and Subconcussive Brain Trauma

  • Chapter
  • First Online:
Tackling the Concussion Epidemic
  • 597 Accesses

Abstract

The pursuit of a blood test for traumatic brain injury (TBI), and more specifically concussion, has been very active over the last decade with a barrage of publications seeking the best biomarkers for the job. As with other organ-based diseases, the employment of a rapid, accurate, and widely available blood test to guide diagnosis and treatment of TBI and concussion would be a welcome clinical tool. Such a blood test has considerable diagnostic and prognostic promise given the number of critical applications it would have. Early human trials examined only moderate-to-severe TBI but are now expanding to include injuries on the milder end of the TBI spectrum, such as concussion and subconcussive injuries. In the USA, two biomarkers have now been FDA-approved for clinical use in adult patients with mild-to-moderate TBI to help determine need for CT scan acutely after injury. More work is now being done to detect concussive and subconcussive injuries. Mechanism and severity of injury, timing of sample collection, type of biofluid collected, biokinetic profiles of select biomarkers, and individual patient physiology can all impact biomarker release following concussion. Careful consideration of these factors will be essential when designing future concussion biomarker studies and interpreting results. As technology advances and integrates neuroproteomics, metabolomics, bioinformatics, genetics, and neuroimaging, the path from discovery to validation of potential TBI biomarkers will be swift. This chapter will review the most widely studied proteomic biomarkers for mild TBI and concussion in humans and will introduce a novel group of promising transcriptomic biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papa L. Potential blood-based biomarkers for concussion. Sports Med Arthrosc Rev. 2016;24:108–15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Papa L, Mittal MK, Ramirez J, Ramia M, Kirby S, Silvestri S, Giordano P, Weber K, Braga CF, Tan CN, Ameli NJ, Lopez M, Zonfrillo M. In children and youth with mild and moderate traumatic brain injury, glial fibrillary acidic protein out-performs S100beta in detecting traumatic intracranial lesions on computed tomography. J Neurotrauma. 2016;33:58–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Papa L, Zonfrillo MR, Ramirez J, Silvestri S, Giordano P, Braga CF, Tan CN, Ameli NJ, Lopez M, Mittal MK. Performance of glial fibrillary acidic protein in detecting traumatic intracranial lesions on computed tomography in children and youth with mild head trauma. Acad Emerg Med. 2015;22:1274–82.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Papa L, Ramia MM, Kelly JM, Burks SS, Pawlowicz A, Berger RP. Systematic review of clinical research on biomarkers for pediatric traumatic brain injury. J Neurotrauma. 2013;30:324–38.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Papa L, Ramia MM, Edwards D, Johnson BD, Slobounov SM. Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion. J Neurotrauma. 2015;32:661–73.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Papa L. Exploring the role of biomarkers for the diagnosis and management of traumatic brain injury patients. In: Man TK, Flores RJ, editors. Poteomics – human diseases and protein functions. 1st ed. London, UK: In Tech Open Access Publisher; 2012.

    Google Scholar 

  7. Papa L, Edwards D, Ramia M. Exploring serum biomarkers for mild traumatic brain injury. In: Kobeissy FH, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton: CRC Press/Taylor & Francis; 2015. p. 301–8.

    Google Scholar 

  8. Papa L, Wang KKW. Raising the bar for traumatic brain injury biomarker research: methods make a difference. J Neurotrauma. 2017;34:2187–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Papa L, Robinson G, Oli M, Pineda J, Demery J, Brophy G, Robicsek SA, Gabrielli A, Robertson CS, Wang KW, Hayes RL. Use of biomarkers for diagnosis and management of traumatic brain injury patients. Expert Opin Med Diagn. 2008;2:937–45.

    Article  PubMed  Google Scholar 

  10. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma. 2004;21:1553–61.

    Article  PubMed  Google Scholar 

  11. Papa L, Silvestri S, Brophy GM, Giordano P, Falk JL, Braga CF, Tan CN, Ameli NJ, Demery JA, Dixit NK, Mendes ME, Hayes RL, Wang KK, Robertson CS. GFAP out-performs S100beta in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions. J Neurotrauma. 2014;31:1815–22.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tongaonkar P, Chen L, Lambertson D, Ko B, Madura K. Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol Cell Biol. 2000;20:4691–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gong B, Leznik E. The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect. 2007;20:365–70.

    Article  CAS  PubMed  Google Scholar 

  14. Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, Giordano P, Brophy GM, Demery JA, Dixit NK, Ferguson I, Liu MC, Mo J, Akinyi L, Schmid K, Mondello S, Robertson CS, Tortella FC, Hayes RL, Wang KK. Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med. 2012;59:471–83.

    Article  PubMed  Google Scholar 

  15. Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN, Ameli NJ, Lopez MA, Haeussler CA, Mendez Giordano DI, Silvestri S, Giordano P, Weber KD, Hill-Pryor C, Hack DC. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 2016;73:551–60.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Metting Z, Wilczak N, Rodiger LA, Schaaf JM, Van Der Naalt J. GFAP and S100B in the acute phase of mild traumatic brain injury. Neurology. 2012;78:1428–33.

    Article  CAS  PubMed  Google Scholar 

  17. Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Brophy GM, Demery JA, Liu MC, Mo J, Akinyi L, Mondello S, Schmid K, Robertson CS, Tortella FC, Hayes RL, Wang KK. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg. 2012;72:1335–44.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Welch RD, Ellis M, Lewis LM, Ayaz SI, Mika VH, Millis S, Papa L. Modeling the kinetics of serum glial fibrillary acidic protein, ubiquitin carboxyl-terminal hydrolase-L1, and S100B concentrations in patients with traumatic brain injury. J Neurotrauma. 2017;34:1957–71.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lewis LM, Schloemann DT, Papa L, Fucetola RP, Bazarian J, Lindburg M, Welch RD. Utility of serum biomarkers in the diagnosis and stratification of mild traumatic brain injury. Acad Emerg Med. 2017;24:710–20.

    Article  PubMed  Google Scholar 

  20. Bazarian JJ, Biberthaler P, Welch RD, Lewis LM, Barzo P, Bogner-Flatz V, Gunnar Brolinson P, Buki A, Chen JY, Christenson RH, Hack D, Huff JS, Johar S, Jordan JD, Leidel BA, Lindner T, Ludington E, Okonkwo DO, Ornato J, Peacock WF, Schmidt K, Tyndall JA, Vossough A, Jagoda AS. Serum GFAP and UCH-L1 for prediction of absence of intracranial injuries on head CT (ALERT-TBI): a multicentre observational study. Lancet Neurol. 2018;17:782–9.

    Article  CAS  PubMed  Google Scholar 

  21. Papa L, Mittal MK, Ramirez J, Silvestri S, Giordano P, Braga CF, Tan CN, Ameli NJ, Lopez MA, Haeussler CA, Mendez Giordano D, Zonfrillo MR. Neuronal biomarker ubiquitin C-terminal hydrolase detects traumatic intracranial lesions on computed tomography in children and youth with mild traumatic brain injury. J Neurotrauma. 2017;34:2132–40.

    Article  PubMed  PubMed Central  Google Scholar 

  22. FDA authorizes marketing of first blood test to aid in the evaluation of concussion in adults. [Online]. Silver Springs: US Food & Drug Administration; 2018. Accessed 2 July 2018.

    Google Scholar 

  23. Yue JK, Yuh EL, Korley FK, Winkler EA, Sun X, Puffer RC, Deng H, Choy W, Chandra A, Taylor SR, Ferguson AR, Huie JR, Rabinowitz M, Puccio AM, Mukherjee P, Vassar MJ, Wang KKW, Diaz-Arrastia R, Okonkwo DO, Jain S, Manley GT, Investigators, T.-T. Association between plasma GFAP concentrations and MRI abnormalities in patients with CT-negative traumatic brain injury in the TRACK-TBI cohort: a prospective multicentre study. Lancet Neurol. 2019;18:953–61.

    Article  CAS  PubMed  Google Scholar 

  24. Zhou Y, Kierans A, Kenul D, Ge Y, Rath J, Reaume J, Grossman RI, Lui YW. Mild traumatic brain injury: longitudinal regional brain volume changes. Radiology. 2013;267:880–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bailes JE, Petraglia AL, Omalu BI, Nauman E, Talavage T. Role of subconcussion in repetitive mild traumatic brain injury. J Neurosurg. 2013;119:1235–45.

    Article  PubMed  Google Scholar 

  26. Bailes JE, Dashnaw ML, Petraglia AL, Turner RC. Cumulative effects of repetitive mild traumatic brain injury. Prog Neurol Surg. 2014;28:50–62.

    Article  PubMed  Google Scholar 

  27. Tate CM, Wang KK, Eonta S, Zhang Y, Carr W, Tortella FC, Hayes RL, Kamimori GH. Serum brain biomarker level, neurocognitive performance, and self-reported symptom changes in soldiers repeatedly exposed to low-level blast: a breacher pilot study. J Neurotrauma. 2013;30:1620–30.

    Article  PubMed  Google Scholar 

  28. Gavett BE, Stern RA, Mckee AC. Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clin Sports Med. 2011;30:179–88.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Huber BR, Alosco ML, Stein TD, Mckee AC. Potential long-term consequences of concussive and subconcussive injury. Phys Med Rehabil Clin N Am. 2016;27:503–11.

    Article  PubMed  Google Scholar 

  30. Papa L, Zonfrillo MR, Welch RD, Lewis LM, Braga CF, Tan CN, Ameli NJ, Lopez MA, Haeussler CA, Mendez Giordano D, Giordano PA, Ramirez J, Mittal MK. Evaluating glial and neuronal blood biomarkers GFAP and UCH-L1 as gradients of brain injury in concussive, subconcussive and non-concussive trauma: a prospective cohort study. BMJ Paediatr Open. 2019;3:e000473.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Meier TB, Nelson LD, Huber DL, Bazarian JJ, Hayes RL, Mccrea MA. Prospective assessment of acute blood markers of brain injury in sport-related concussion. J Neurotrauma. 2017;34:3134–42.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Joseph JR, Swallow JS, Willsey K, Lapointe AP, Khalatbari S, Korley FK, Oppenlander ME, Park P, Szerlip NJ, Broglio SP. Elevated markers of brain injury as a result of clinically asymptomatic high-acceleration head impacts in high-school football athletes. J Neurosurg. 2018;130(5):1–7.

    Google Scholar 

  33. Asken BM, Bauer RM, Dekosky ST, Svingos AM, Hromas G, Boone JK, Dubose DN, Hayes RL, Clugston JR. Concussion BASICS III: serum biomarker changes following sport-related concussion. Neurology. 2018;91:e2133–43.

    Article  CAS  PubMed  Google Scholar 

  34. Puvenna V, Brennan C, Shaw G, Yang C, Marchi N, Bazarian JJ, Merchant-Borna K, Janigro D. Significance of ubiquitin carboxy-terminal hydrolase L1 elevations in athletes after sub-concussive head hits. PLoS One. 2014;9:e96296.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zimmer DB, Cornwall EH, Landar A, Song W. The S100 protein family: history, function, and expression. Brain Res Bull. 1995;37:417–29.

    Article  CAS  PubMed  Google Scholar 

  36. Olsson B, Zetterberg H, Hampel H, Blennow K. Biomarker-based dissection of neurodegenerative diseases. Prog Neurobiol. 2011;95:520–34.

    Article  CAS  PubMed  Google Scholar 

  37. Schulte S, Podlog LW, Hamson-Utley JJ, Strathmann FG, Struder HK. A systematic review of the biomarker S100B: implications for sport-related concussion management. J Athl Train. 2014;49:830–50.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Heidari K, Vafaee A, Rastekenari AM, Taghizadeh M, Shad EG, Eley R, Sinnott M, Asadollahi S. S100B protein as a screening tool for computed tomography findings after mild traumatic brain injury: systematic review and meta-analysis. Brain Inj. 2015;29:1146–57.

    Article  PubMed  Google Scholar 

  39. Ingebrigtsen T, Romner B. Management of minor head injuries in hospitals in Norway. Acta Neurol Scand. 1997;95:51–5.

    Article  CAS  PubMed  Google Scholar 

  40. Waterloo K, Ingebrigtsen T, Romner B. Neuropsychological function in patients with increased serum levels of protein S-100 after minor head injury. Acta Neurochir. 1997;139:26–31; discussion 31–2.

    Article  CAS  PubMed  Google Scholar 

  41. Ingebrigtsen T, Romner B. Serial S-100 protein serum measurements related to early magnetic resonance imaging after minor head injury. Case report. J Neurosurg. 1996;85:945–8.

    Article  CAS  PubMed  Google Scholar 

  42. Ingebrigtsen T, Waterloo K, Jacobsen EA, Langbakk B, Romner B. Traumatic brain damage in minor head injury: relation of serum S-100 protein measurements to magnetic resonance imaging and neurobehavioral outcome. Neurosurgery. 1999;45:468–75; discussion 475–6.

    Article  CAS  PubMed  Google Scholar 

  43. Heidari K, Asadollahi S, Jamshidian M, Abrishamchi SN, Nouroozi M. Prediction of neuropsychological outcome after mild traumatic brain injury using clinical parameters, serum S100B protein and findings on computed tomography. Brain Inj. 2015;29:33–40.

    Article  PubMed  Google Scholar 

  44. Bazarian JJ, Zemlan FP, Mookerjee S, Stigbrand T. Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Inj. 2006;20:759–65.

    Article  PubMed  Google Scholar 

  45. Lima DP, Simao Filho C, Abib Sde C, De Figueiredo LF. Quality of life and neuropsychological changes in mild head trauma. Late analysis and correlation with S100B protein and cranial CT scan performed at hospital admission. Injury. 2008;39:604–11.

    PubMed  Google Scholar 

  46. Dorminy M, Hoogeveen A, Tierney RT, Higgins M, Mcdevitt JK, Kretzschmar J. Effect of soccer heading ball speed on S100B, sideline concussion assessments and head impact kinematics. Brain Inj. 2015;29:1158–64.

    Article  PubMed  Google Scholar 

  47. Kiechle K, Bazarian JJ, Merchant-Borna K, Stoecklein V, Rozen E, Blyth B, Huang JH, Dayawansa S, Kanz K, Biberthaler P. Subject-specific increases in serum S-100B distinguish sports-related concussion from sports-related exertion. PLoS One. 2014;9:e84977.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shahim P, Tegner Y, Wilson DH, Randall J, Skillback T, Pazooki D, Kallberg B, Blennow K, Zetterberg H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014;71:684–92.

    Article  PubMed  Google Scholar 

  49. Kawata K, Rubin LH, Takahagi M, Lee JH, Sim T, Szwanki V, Bellamy A, Tierney R, Langford D. Subconcussive impact-dependent increase in plasma s100beta levels in collegiate football players. J Neurotrauma. 2017;34:2254–60.

    Article  PubMed  Google Scholar 

  50. Zonner SW, Ejima K, Bevilacqua ZW, Huibregtse ME, Charleston C, Fulgar C, Kawata K. Association of increased serum s100b levels with high school football subconcussive head impacts. Front Neurol. 2019;10:327.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Babcock L, Byczkowski T, Wade SL, Ho M, Bazarian JJ. Inability of S100B to predict postconcussion syndrome in children who present to the emergency department with mild traumatic brain injury: a brief report. Pediatr Emerg Care. 2013;29:458–61.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pelinka LE, Kroepfl A, Schmidhammer R, Krenn M, Buchinger W, Redl H, Raabe A. Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma. 2004;57:1006–12.

    Article  CAS  PubMed  Google Scholar 

  53. Teunissen CE, Dijkstra C, Polman C. Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurol. 2005;4:32–41.

    Article  PubMed  Google Scholar 

  54. Kosik KS, Finch EA. MAP2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. J Neurosci. 1987;7:3142–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Higuchi M, Lee VM, Trojanowski JQ. Tau and axonopathy in neurodegenerative disorders. NeuroMolecular Med. 2002;2:131–50.

    Article  CAS  PubMed  Google Scholar 

  56. Shaw GJ, Jauch EC, Zemlan FP. Serum cleaved tau protein levels and clinical outcome in adult patients with closed head injury. Ann Emerg Med. 2002;39:254–7.

    Article  PubMed  Google Scholar 

  57. Chatfield DA, Zemlan FP, Day DJ, Menon DK. Discordant temporal patterns of S100beta and cleaved tau protein elevation after head injury: a pilot study. Br J Neurosurg. 2002;16:471–6.

    Article  CAS  PubMed  Google Scholar 

  58. Ma M, Lindsell CJ, Rosenberry CM, Shaw GJ, Zemlan FP. Serum cleaved tau does not predict postconcussion syndrome after mild traumatic brain injury. Am J Emerg Med. 2008;26:763–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bulut M, Koksal O, Dogan S, Bolca N, Ozguc H, Korfali E, Ilcol YO, Parklak M. Tau protein as a serum marker of brain damage in mild traumatic brain injury: preliminary results. Adv Ther. 2006;23:12–22.

    Article  CAS  PubMed  Google Scholar 

  60. Rubenstein R, Chang B, Davies P, Wagner AK, Robertson CS, Wang KK. A novel, ultrasensitive assay for tau: potential for assessing traumatic brain injury in tissues and biofluids. J Neurotrauma. 2015;32:342–52.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rubenstein R, Chang B, Yue JK, Chiu A, Winkler EA, Puccio AM, Diaz-Arrastia R, Yuh EL, Mukherjee P, Valadka AB, Gordon WA, Okonkwo DO, Davies P, Agarwal S, Lin F, Sarkis G, Yadikar H, Yang Z, Manley GT, Wang KKW, The, T.-T. B. I. I, Cooper SR, Dams-O’connor K, Borrasso AJ, Inoue T, Maas AIR, Menon DK, Schnyer DM, Vassar MJ. Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau-Total Tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol. 2017;74:1063–72.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Puvenna V, Engeler M, Banjara M, Brennan C, Schreiber P, Dadas A, Bahrami A, Solanki J, Bandyopadhyay A, Morris JK, Bernick C, Ghosh C, Rapp E, Bazarian JJ, Janigro D. Is phosphorylated tau unique to chronic traumatic encephalopathy? Phosphorylated tau in epileptic brain and chronic traumatic encephalopathy. Brain Res. 2016;1630:225–40.

    Article  CAS  PubMed  Google Scholar 

  63. Alosco ML, Tripodis Y, Fritts NG, Heslegrave A, Baugh CM, Conneely S, Mariani M, Martin BM, Frank S, Mez J, Stein TD, Cantu RC, Mckee AC, Shaw LM, Trojanowski JQ, Blennow K, Zetterberg H, Stern RA. Cerebrospinal fluid tau, Abeta, and sTREM2 in Former National Football League Players: modeling the relationship between repetitive head impacts, microglial activation, and neurodegeneration. Alzheimers Dement. 2018;14:1159–70.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Julien JP, Mushynski WE. Neurofilaments in health and disease. Prog Nucleic Acid Res Mol Biol. 1998;61:1–23.

    Article  CAS  PubMed  Google Scholar 

  65. Buki A, Povlishock JT. All roads lead to disconnection?--Traumatic axonal injury revisited. Acta Neurochir. 2006;148:181–93; discussion 193–4.

    Article  CAS  PubMed  Google Scholar 

  66. Siman R, Toraskar N, Dang A, Mcneil E, Mcgarvey M, Plaum J, Maloney E, Grady MS. A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J Neurotrauma. 2009;26:1867–77.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zurek J, Bartlova L, Fedora M. Hyperphosphorylated neurofilament NF-H as a predictor of mortality after brain injury in children. Brain Inj. 2012;25:221–6.

    Article  Google Scholar 

  68. Vajtr D, Benada O, Linzer P, Samal F, Springer D, Strejc P, Beran M, Prusa R, Zima T. Immunohistochemistry and serum values of S-100B, glial fibrillary acidic protein, and hyperphosphorylated neurofilaments in brain injuries. Soud Lek. 2013;57:7–12.

    Google Scholar 

  69. Shahim P, Zetterberg H, Tegner Y, Blennow K. Serum neurofilament light as a biomarker for mild traumatic brain injury in contact sports. Neurology. 2017;88:1788–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wirsching A, Chen Z, Bevilacqua ZW, Huibregtse ME, Kawata K. Association of acute increase in plasma neurofilament light with repetitive subconcussive head impacts: a pilot randomized control trial. J Neurotrauma. 2019;36:548–53.

    Article  PubMed  Google Scholar 

  71. Wallace C, Zetterberg H, Blennow K, Van Donkelaar P. No change in plasma tau and serum neurofilament light concentrations in adolescent athletes following sport-related concussion. PLoS One. 2018;13:e0206466.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Jin XF, Wu N, Wang L, Li J. Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cell Mol Neurobiol. 2013;33:601–13.

    Article  CAS  PubMed  Google Scholar 

  73. Balakathiresan N, Bhomia M, Chandran R, Chavko M, Mccarron RM, Maheshwari RK. MicroRNA let-7i is a promising serum biomarker for blast-induced traumatic brain injury. J Neurotrauma. 2012;29:1379–87.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bhomia M, Balakathiresan NS, Wang KK, Papa L, Maheshwari RK. A panel of serum MiRNA biomarkers for the diagnosis of severe to mild traumatic brain injury in humans. Sci Rep. 2016;6:28148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hicks SD, Johnson J, Carney MC, Bramley H, Olympia RP, Loeffert AC, Thomas NJ. Overlapping MicroRNA expression in saliva and cerebrospinal fluid accurately identifies pediatric traumatic brain injury. J Neurotrauma. 2018;35:64–72.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Johnson JJ, Loeffert AC, Stokes J, Olympia RP, Bramley H, Hicks SD. Association of salivary MicroRNA changes with prolonged concussion symptoms. JAMA Pediatr. 2018;172:65–73.

    Article  PubMed  Google Scholar 

  77. Mitra B, Rau TF, Surendran N, Brennan JH, Thaveenthiran P, Sorich E, Fitzgerald MC, Rosenfeld JV, Patel SA. Plasma micro-RNA biomarkers for diagnosis and prognosis after traumatic brain injury: a pilot study. J Clin Neurosci. 2017;38:37–42.

    Article  CAS  PubMed  Google Scholar 

  78. Papa L, Slobounov SM, Breiter HC, Walter A, Bream T, Seidenberg P, Bailes JE, Bravo S, Johnson B, Kaufman D, Molfese DL, Talavage TM, Zhu DC, Knollmann-Ritschel B, Bhomia M. Elevations in MicroRNA biomarkers in serum are associated with measures of concussion, neurocognitive function, and subconcussive trauma over a Single National Collegiate Athletic Association Division I Season in Collegiate Football Players. J Neurotrauma. 2019;36:1343–51.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Abbas K, Shenk TE, Poole VN, Breedlove EL, Leverenz LJ, Nauman EA, Talavage TM, Robinson ME. Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study. Brain Connect. 2015;5:91–101.

    Article  PubMed  Google Scholar 

  80. Di Pietro V, Porto E, Ragusa M, Barbagallo C, Davies D, Forcione M, Logan A, Di Pietro C, Purrello M, Grey M, Hammond D, Sawlani V, Barbey AK, Belli A. Salivary MicroRNAs: diagnostic markers of mild traumatic brain injury in contact-sport. Front Mol Neurosci. 2018;11:290.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papa, L. (2022). The Path Toward a Blood Test for Concussion: A Review of Biofluid Biomarkers for Concussive and Subconcussive Brain Trauma. In: Schweizer, T.A., Baker, A.J. (eds) Tackling the Concussion Epidemic. Springer, Cham. https://doi.org/10.1007/978-3-030-93813-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93813-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93812-3

  • Online ISBN: 978-3-030-93813-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics