Skip to main content

Sleep and Hypoventilation

  • Chapter
  • First Online:
Essentials of Sleep Medicine

Part of the book series: Respiratory Medicine ((RM))

  • 1099 Accesses

Abstract

Sleep presents a significant challenge to breathing for people with pre-existing abnormalities affecting chest wall mechanics, diaphragmatic function or respiratory control. The normal changes in sleep-breathing physiology favouring some degree of hypoventilation superimposed on underlying respiratory abnormalities can produce significant retention of carbon dioxide, initially confined to sleep with eventual development of chronic awake hypercapnic respiratory failure. Although sleep hypoventilation has a significant impact on quality of life, healthcare use and mortality, recognition of the problem is often delayed until the person presents with daytime hypercapnia, often in the acute setting. Recognizing those at potential risk of sleep hypoventilation with timely monitoring during sleep, including carbon dioxide measurement, can identify these individuals earlier in their disease trajectory. Not only can this reduce the likelihood of presenting with acute life-threatening respiratory failure but might also minimize the development of significant cardiovascular morbidities, which can become the primary cause of death even when reversal of nocturnal hypoventilation is achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas NJ, White DP, Pickett CK, Weil JV, Zwillich CW. Respiration during sleep in normal man. Thorax. 1982;37:840–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tabachnik E, Muller NL, Bryan AC, Levison H. Changes in ventilation and chest wall mechanics during sleep in normal adolescents. J Appl Physiol. 1981;51(3):557–64.

    Article  CAS  PubMed  Google Scholar 

  3. Becker HF, Piper AJ, Flynn WE, et al. Breathing during sleep in patients with nocturnal desaturation. Am J Respir Crit Care Med. 1999;159(1):112–8.

    Article  CAS  PubMed  Google Scholar 

  4. Douglas NJ, White DP, Weil JV, Pickett CK, Zwillich CW. Hypercapnic ventilatory response in sleeping adults. Am Rev Respir Dis. 1982;126(5):758–62.

    CAS  PubMed  Google Scholar 

  5. Appelberg J, Nordahl G, Janson C. Lung volume and its correlation to nocturnal apnoea and desaturation. Respir Med. 2000;94(3):233–9.

    Article  CAS  PubMed  Google Scholar 

  6. White DP, Douglas NJ, Pickett CK, Zwillich CW, Weil JV. Sleep deprivation and the control of ventilation. Am Rev Respir Dis. 1983;128(6):984–6.

    CAS  PubMed  Google Scholar 

  7. Hlavac MC, Catcheside PG, McDonald R, Eckert DJ, Windler S, McEvoy RD. Hypoxia impairs the arousal response to external resistive loading and airway occlusion during sleep. Sleep. 2006;29(5):624–31.

    PubMed  Google Scholar 

  8. Piper A. Sleep abnormalities associated with neuromuscular disease: pathophysiology and evaluation. Semin Respir Crit Care Med. 2002;23(3):211–9.

    Article  PubMed  Google Scholar 

  9. Arnulf I, Similowski T, Salachas F, et al. Sleep disorders and diaphragmatic function in patients with amyotrophic lateral sclerosis. Am J Respir Crit Care Med. 2000;161(3):849–56.

    Article  CAS  PubMed  Google Scholar 

  10. Luo YM, He BT, Wu YX, et al. Neural respiratory drive and ventilation in patients with chronic obstructive pulmonary disease during sleep. Am J Respir Crit Care Med. 2014;190(2):227–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bye PT, Ellis ER, Issa FG, Donnelly PM, Sullivan CE. Respiratory failure and sleep in neuromuscular disease. Thorax. 1990;45(4):241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. White JE, Drinnan MJ, Smithson AJ, Griffiths CJ, Gibson GJ. Respiratory muscle activity during rapid eye movement (REM) sleep in patients with chronic obstructive pulmonary disease. Thorax. 1995;50(4):376–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bennett JR, Dunroy HM, Corfield DR, et al. Respiratory muscle activity during REM sleep in patients with diaphragm paralysis. Neurology. 2004;62(1):134–7.

    Article  CAS  PubMed  Google Scholar 

  14. Redolfi S, Grassion L, Rivals I, et al. Abnormal activity of neck inspiratory muscles during sleep as a prognostic indicator in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2020;201(4):414–22.

    Article  PubMed  Google Scholar 

  15. Goldring RM, Turino GM, Heinemann HO. Respiratory-renal adjustments in chronic hypercapnia in man. Extracellular bicarbonate concentration and the regulation of ventilation. Am J Med. 1971;51(6):772–84.

    Article  CAS  PubMed  Google Scholar 

  16. Chouri-Pontarollo N, Borel JC, Tamisier R, Wuyam B, Levy P, Pepin JL. Impaired objective daytime vigilance in obesity-hypoventilation syndrome: impact of noninvasive ventilation. Chest. 2007;131(1):148–55.

    Article  PubMed  Google Scholar 

  17. Nickol AH, Hart N, Hopkinson NS, Moxham J, Simonds A, Polkey MI. Mechanisms of improvement of respiratory failure in patients with restrictive thoracic disease treated with non-invasive ventilation. Thorax. 2005;60(9):754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nickol A, Hart N, Hopkinson N, et al. Mechanisms of improvement of respiratory failure in patients with COPD treated with NIV. Int J Chron Obstruct Pulmon Dis. 2008;3(3):453–62.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ragette R, Mellies U, Schwake C, Voit T, Teschler H. Patterns and predictors of sleep disordered breathing in primary myopathies. Thorax. 2002;57(8):724–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fromageot C, Lofaso F, Annane D, et al. Supine fall in lung volumes in the assessment of diaphragmatic weakness in neuromuscular disorders. Arch Phys Med Rehabil. 2001;82(1):123–8.

    Article  CAS  PubMed  Google Scholar 

  21. Baumann F, Henderson RD, Morrison SC, et al. Use of respiratory function tests to predict survival in amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010;11(1-2):194–202.

    Article  PubMed  Google Scholar 

  22. Boentert M, Glatz C, Helmle C, Okegwo A, Young P. Prevalence of sleep apnoea and capnographic detection of nocturnal hypoventilation in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2018;89(4):418–24.

    Article  PubMed  Google Scholar 

  23. Morgan RK, McNally S, Alexander M, Conroy R, Hardiman O, Costello RW. Use of sniff nasal-inspiratory force to predict survival in amyotrophic lateral sclerosis. Am J Respir Crit Care Med. 2005;171(3):269–74.

    Article  PubMed  Google Scholar 

  24. Fitting JW. Sniff nasal inspiratory pressure: simple or too simple? Eur Respir J. 2006;27(5):881–3.

    Article  PubMed  Google Scholar 

  25. Oliveira MJP, Rodrigues F, Firmino-Machado J, et al. Assessment of respiratory muscle weakness in subjects with neuromuscular disease. Respir Care. 2018;63(10):1223–30.

    Article  PubMed  Google Scholar 

  26. Chung Y, Garden FL, Jee AS, et al. Supine awake oximetry as a screening tool for daytime hypercapnia in super-obese patients. Intern Med J. 2017;47(10):1136–41.

    Article  CAS  PubMed  Google Scholar 

  27. Mandal S, Suh ES, Boleat E, et al. A cohort study to identify simple clinical tests for chronic respiratory failure in obese patients with sleep-disordered breathing. BMJ Open Respir Res. 2014;1(1):e000022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Randerath W, Verbraecken J, Andreas S, et al. Definition, discrimination, diagnosis and treatment of central breathing disturbances during sleep. Eur Respir J. 2017;49(1):1600959.

    Article  PubMed  Google Scholar 

  29. Manuel ARGM, Mbbs RG, Hart NP, Stradling JRMD. Is a raised bicarbonate, without hypercapnia, part of the physiologic spectrum of obesity-related hypoventilation? Chest. 2015;147(2):362–8.

    Article  PubMed  Google Scholar 

  30. Sivam S, Yee B, Wong K, Wang D, Grunstein R, Piper A. Obesity hypoventilation syndrome: early detection of nocturnal-only hypercapnia in an obese population. J Clin Sleep Med. 2018;14(9):1477–84.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mokhlesi B, Masa JF, Brozek JL, et al. Evaluation and management of Obesity Hypoventilation Syndrome. An official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med. 2019;200(3):e6–e24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mulloy E, McNicholas WT. Ventilation and gas exchange during sleep and exercise in severe COPD. Chest. 1996;109(2):387–94.

    Article  CAS  PubMed  Google Scholar 

  33. Tarrega J, Anton A, Guell R, et al. Predicting nocturnal hypoventilation in hypercapnic chronic obstructive pulmonary disease patients undergoing long-term oxygen therapy. Respiration. 2011;82(1):4–9.

    Article  CAS  PubMed  Google Scholar 

  34. Hukins CA, Hillman DR. Daytime predictors of sleep hypoventilation in Duchenne muscular dystrophy. Am J Respir Crit Care Med. 2000;161(1):166–70.

    Article  CAS  PubMed  Google Scholar 

  35. Manthous CA, Mokhlesi B. Avoiding management errors in patients with obesity hypoventilation syndrome. Ann Am Thorac Soc. 2016;13(1):109–14.

    Article  PubMed  Google Scholar 

  36. Georges M, Nguyen-Baranoff D, Griffon L, et al. Usefulness of transcutaneous PCO2 to assess nocturnal hypoventilation in restrictive lung disorders. Respirology. 2016;21(7):1300–6.

    Article  PubMed  Google Scholar 

  37. Berry RB, Budhiraja R, Gottlieb DJ, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8(5):597–619.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Duiverman ML, Vonk JM, Bladder G, et al. Home initiation of chronic non-invasive ventilation in COPD patients with chronic hypercapnic respiratory failure: a randomised controlled trial. Thorax. 2020;75(3):244–52.

    Article  PubMed  Google Scholar 

  39. Storre JH, Magnet FS, Dreher M, Windisch W. Transcutaneous monitoring as a replacement for arterial PCO(2) monitoring during nocturnal non-invasive ventilation. Respir Med. 2011;105(1):143–50.

    Article  PubMed  Google Scholar 

  40. Berlowitz DJ, Spong J, O’Donoghue FJ, et al. Transcutaneous measurement of carbon dioxide tension during extended monitoring: evaluation of accuracy and stability, and an algorithm for correcting calibration drift. Respir Care. 2011;56(4):442–8.

    Article  PubMed  Google Scholar 

  41. Ogna A, Quera Salva MA, Prigent H, et al. Nocturnal hypoventilation in neuromuscular disease: prevalence according to different definitions issued from the literature. Sleep Breath. 2016;20(2):575–81.

    Article  PubMed  Google Scholar 

  42. Orlikowski D, Prigent H, Quera Salva MA, et al. Prognostic value of nocturnal hypoventilation in neuromuscular patients. Neuromuscul Disord. 2017;27(4):326–30.

    Article  PubMed  Google Scholar 

  43. Ward S, Chatwin M, Heather S, Simonds AK. Randomised controlled trial of non-invasive ventilation (NIV) for nocturnal hypoventilation in neuromuscular and chest wall disease patients with daytime normocapnia. Thorax. 2005;60(12):1019–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ogna A, Nardi J, Prigent H, et al. Prognostic value of initial assessment of residual hypoventilation using nocturnal capnography in mechanically ventilated neuromuscular patients: a 5-year follow-up study. Front Med. 2016;3:40.

    Article  Google Scholar 

  45. Masa JF, Corral J, Alonso ML, et al. Efficacy of different treatment alternatives for obesity hypoventilation syndrome. Pickwick study. Am J Respir Crit Care Med. 2015;192(1):86–95.

    Article  PubMed  Google Scholar 

  46. Littleton SW, Mokhlesi B. The Pickwickian syndrome—obesity hypoventilation syndrome. Clin Chest Med. 2009;30(3):467–78.

    Article  PubMed  Google Scholar 

  47. BaHammam AS. Prevalence, clinical characteristics, and predictors of obesity hypoventilation syndrome in a large sample of Saudi patients with obstructive sleep apnea. Saudi Med J. 2015;36(2):181–9.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Balachandran JS, Masa JF, Mokhlesi B. Obesity hypoventilation syndrome: epidemiology and diagnosis. Sleep Med Clin. 2014;9(3):341–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Garner DJ, Berlowitz DJ, Douglas J, et al. Home mechanical ventilation in Australia and New Zealand. Eur Respir J. 2013;41(1):39–45.

    Article  PubMed  Google Scholar 

  50. Melloni B, Mounier L, Laaban JP, Chambellan A, Foret D, Muir JF. Home-based care evolution in chronic respiratory failure between 2001 and 2015 (Antadir Federation Observatory). Respiration. 2018:1–9.

    Google Scholar 

  51. Alawami M, Mustafa A, Whyte K, Alkhater M, Bhikoo Z, Pemberton J. Echocardiographic and electrocardiographic findings in patients with obesity hypoventilation syndrome. Intern Med J. 2015;45(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  52. Kessler R, Chaouat A, Schinkewitch P, et al. The obesity-hypoventilation syndrome revisited: a prospective study of 34 consecutive cases. Chest. 2001;120(2):369–76.

    Article  CAS  PubMed  Google Scholar 

  53. Jennum P, Ibsen R, Kjellberg J. Social consequences of sleep disordered breathing on patients and their partners. A controlled national study. Eur Respir J. 2014;43(1):134–44.

    Article  PubMed  Google Scholar 

  54. Jennum P, Kjellberg J. Health, social and economical consequences of sleep-disordered breathing: a controlled national study. Thorax. 2011;66(7):560–6.

    Article  PubMed  Google Scholar 

  55. Castro-Añón O, Pérez de Llano LA, De la Fuente SS, et al. Obesity-hypoventilation syndrome: increased risk of death over sleep apnea syndrome. PLoS One. 2015;10(2):e0117808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kreivi HR, Italuoma T, Bachour A. Effect of ventilation therapy on mortality rate among obesity hypoventilation syndrome and obstructive sleep apnoea patients. ERJ Open Res. 2020;6(2)

    Google Scholar 

  57. Kendzerska T, Leung RS, Aaron SD, Ayas N, Sandoz JS, Gershon AS. Cardiovascular outcomes and all-cause mortality in patients with obstructive sleep apnea and chronic obstructive pulmonary disease (overlap syndrome). Ann Am Thorac Soc. 2019;16(1):71–81.

    Article  PubMed  Google Scholar 

  58. Marik PE, Desai H. Characteristics of patients with the “malignant obesity hypoventilation syndrome” admitted to an ICU. J Intensive Care Med. 2013;28(2):124–30.

    Article  PubMed  Google Scholar 

  59. Quint JK, Ward L, Davison AG. Previously undiagnosed obesity hypoventilation syndrome. Thorax. 2007;62(5):462–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Masa JF, Corral J, Romero A, et al. Protective cardiovascular effect of sleep apnea severity in obesity hypoventilation syndrome. Chest. 2016;150(1):68–79.

    Article  PubMed  Google Scholar 

  61. Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L. Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest. 1996;109(1):144–51.

    Article  CAS  PubMed  Google Scholar 

  62. Steier J, Jolley CJ, Seymour J, Roughton M, Polkey MI, Moxham J. Neural respiratory drive in obesity. Thorax. 2009;64(8):719–25.

    Article  CAS  PubMed  Google Scholar 

  63. Lee MY, Lin CC, Shen SY, Chiu CH, Liaw SF. Work of breathing in eucapnic and hypercapnic sleep apnea syndrome. Respiration. 2009;77(2):146–53.

    Article  PubMed  Google Scholar 

  64. Lopata M, Onal E. Mass loading, sleep apnea, and the pathogenesis of obesity hypoventilation. Am Rev Respir Dis. 1982;126(4):640–5.

    CAS  PubMed  Google Scholar 

  65. Javaheri S, Simbartl LA. Respiratory determinants of diurnal hypercapnia in obesity hypoventilation syndrome. What does weight have to do with it? Ann Am Thorac Soc. 2014;11(6):945–50.

    Article  PubMed  Google Scholar 

  66. Fernandez Alvarez R, Rubinos Cuadrado G, Ruiz Alvarez I, et al. Hypercapnia response in patients with obesity-hypoventilation syndrome treated with non-invasive ventilation at home. Arch Bronconeumol (Engl Ed). 2018;54(9):455–9.

    Article  Google Scholar 

  67. Berger KI, Ayappa I, Sorkin IB, Norman RG, Rapoport DM, Goldring RM. Postevent ventilation as a function of CO2 load during respiratory events in obstructive sleep apnea. J Appl Physiol. 2002;93(3):917–24.

    Article  PubMed  Google Scholar 

  68. Redolfi S, Corda L, La Piana G, Spandrio S, Prometti P, Tantucci C. Long-term non-invasive ventilation increases chemosensitivity and leptin in obesity-hypoventilation syndrome. Respir Med. 2007;101(6):1191–5.

    Article  PubMed  Google Scholar 

  69. Lin CC, Wu KM, Chou CS, Liaw SF. Oral airway resistance during wakefulness in eucapnic and hypercapnic sleep apnea syndrome. Respir Physiol Neurobiol. 2004;139(2):215–24.

    Article  PubMed  Google Scholar 

  70. Berger KI, Ayappa I, Sorkin IB, Norman RG, Rapoport DM, Goldring RM. CO(2) homeostasis during periodic breathing in obstructive sleep apnea. J Appl Physiol. 2000;88(1):257–64.

    Article  CAS  PubMed  Google Scholar 

  71. Ayappa I, Berger KI, Norman RG, Oppenheimer BW, Rapoport DM, Goldring RM. Hypercapnia and ventilatory periodicity in obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2002;166(8):1112–5.

    Article  PubMed  Google Scholar 

  72. Berger KI, Goldring RM, Rapoport DM. Obesity hypoventilation syndrome. Semin Respir Crit Care Med. 2009;30:253–61.

    Article  PubMed  Google Scholar 

  73. Phipps PR, Starritt E, Caterson I, Grunstein RR. Association of serum leptin with hypoventilation in human obesity. Thorax. 2002;57(1):75–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Campo A, Fruhbeck G, Zulueta JJ, et al. Hyperleptinemia, respiratory drive and hypercapnic response in obese patients. Eur Respir J. 2007;30:223–31.

    Article  CAS  PubMed  Google Scholar 

  75. Makinodan K, Yoshikawa M, Fukuoka A, et al. Effect of serum leptin levels on hypercapnic ventilatory response in obstructive sleep apnea. Respiration. 2008;75(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  76. Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans. Nat Med. 1996;2(5):589–93.

    Article  CAS  PubMed  Google Scholar 

  77. Polotsky M, Elsayed-Ahmed AS, Pichard L, et al. Effects of leptin and obesity on the upper airway function. J Appl Physiol. 2012;112(10):1637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Berger S, Pho H, Fleury-Curado T, et al. Intranasal leptin relieves sleep disordered breathing in mice with diet induced obesity. Am J Respir Crit Care Med. 2019;199(6):773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ip MSM, Mokhlesi B. Activating leptin receptors in the central nervous system using intranasal leptin. A novel therapeutic target for sleep-disordered breathing. Am J Respir Crit Care Med. 2019;199(6):689–91.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Howard ME, Piper AJ, Stevens B, et al. A randomised controlled trial of CPAP versus non-invasive ventilation for initial treatment of obesity hypoventilation syndrome. Thorax. 2017;72(5):437–44.

    Article  PubMed  Google Scholar 

  81. Masa JF, Mokhlesi B, Benitez I, et al. Long-term clinical effectiveness of continuous positive airway pressure therapy versus non-invasive ventilation therapy in patients with obesity hypoventilation syndrome: a multicentre, open-label, randomised controlled trial. Lancet. 2019;393(10182):1721–32.

    Article  PubMed  Google Scholar 

  82. Piper AJ, Wang D, Yee BJ, Barnes DJ, Grunstein RR. Randomised trial of CPAP vs bilevel support in the treatment of obesity hypoventilation syndrome without severe nocturnal desaturation. Thorax. 2008;63(5):395–401.

    Article  CAS  PubMed  Google Scholar 

  83. Royer CP, Schweiger C, Manica D, Rabaioli L, Guerra V, Sbruzzi G. Efficacy of bilevel ventilatory support in the treatment of stable patients with obesity hypoventilation syndrome: systematic review and meta-analysis. Sleep Med. 2018;53:153–64.

    Article  PubMed  Google Scholar 

  84. Soghier I, Brozek JL, Afshar M, et al. Noninvasive ventilation versus CPAP as initial treatment of obesity hypoventilation syndrome. Ann Am Thorac Soc. 2019;16(10):1295–303.

    Article  PubMed  Google Scholar 

  85. Bouloukaki I, Mermigkis C, Michelakis S, et al. The association between adherence to positive airway pressure therapy and long-term outcomes in patients with obesity hypoventilation syndrome: a prospective observational study. J Clin Sleep Med. 2018;14(9):1539–50.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mokhlesi B, Tulaimat A, Evans AT, et al. Impact of adherence with positive airway pressure therapy on hypercapnia in obstructive sleep apnea. J Clin Sleep Med. 2006;2(1):57–62.

    Article  PubMed  Google Scholar 

  87. Salord N, Mayos M, Miralda RM, et al. Continuous positive airway pressure in clinically stable patients with mild-to-moderate obesity hypoventilation syndrome and obstructive sleep apnoea. Respirology. 2013;18(7):1135–42.

    PubMed  Google Scholar 

  88. Masa JF, Mokhlesi B, Benítez I, et al. Echocardiographic changes with positive airway pressure therapy in obesity hypoventilation syndrome. Long-term Pickwick randomized controlled clinical trial. Am J Respir Crit Care Med. 2020;201(5):586–97.

    Article  CAS  PubMed  Google Scholar 

  89. Banerjee D, Yee BJ, Piper AJ, Zwillich CW, Grunstein RR. Obesity hypoventilation syndrome: hypoxemia during continuous positive airway pressure. Chest. 2007;131(6):1678–84.

    Article  PubMed  Google Scholar 

  90. Perez de Llano LA, Golpe R, Ortiz Piquer M, et al. Clinical heterogeneity among patients with obesity hypoventilation syndrome: therapeutic implications. Respiration. 2008;75(1):34–9.

    Article  PubMed  Google Scholar 

  91. Masa JF, Benítez I, Sánchez-Quiroga M, et al. Long-term noninvasive ventilation in obesity hypoventilation syndrome without severe OSA: the Pickwick randomized controlled trial. Chest. 2020:S0012-3692(20)30711-X.; https://doi.org/10.1016/j.chest.2020.03.068.

  92. Carrillo A, Ferrer M, Gonzalez-Diaz G, et al. Noninvasive ventilation in acute hypercapnic respiratory failure caused by obesity hypoventilation syndrome and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(12):1279–85.

    Article  PubMed  Google Scholar 

  93. Kakazu MT, Soghier I, Afshar M, et al. Weight loss interventions as treatment of obesity hypoventilation syndrome. A systematic review. Ann Am Thorac Soc. 2020;17(4):492–502.

    Article  PubMed  Google Scholar 

  94. Borel J-C, Burel B, Tamisier R, et al. Comorbidities and mortality in hypercapnic obese under domiciliary noninvasive ventilation. PLoS One. 2013;8(1):e52006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lo Coco D, Marchese S, Corrao S, et al. Development of chronic hypoventilation in amyotrophic lateral sclerosis patients. Respir Med. 2006;100(6):1028–36.

    Article  PubMed  Google Scholar 

  96. Prell T, Ringer TM, Wullenkord K, et al. Assessment of pulmonary function in amyotrophic lateral sclerosis: when can polygraphy help evaluate the need for non-invasive ventilation? J Neurol Neurosurg Psychiatry. 2016;87(9):1022–6.

    Article  PubMed  Google Scholar 

  97. Reyhani A, Benbir Senel G, Karadeniz D. Effects of sleep-related disorders on the prognosis of amyotrophic lateral sclerosis. Neurodegener Dis. 2019;19(3-4):148–54.

    Article  PubMed  Google Scholar 

  98. Aboussouan LS. Sleep-disordered breathing in neuromuscular disease. Am J Respir Crit Care Med. 2015;191(9):979–89.

    Article  PubMed  Google Scholar 

  99. Suresh S, Wales P, Dakin C, Harris MA, Cooper DG. Sleep-related breathing disorder in Duchenne muscular dystrophy: disease spectrum in the paediatric population. J Paediatr Child Health. 2005;41(9-10):500–3.

    Article  PubMed  Google Scholar 

  100. Georges M, Attali V, Golmard JL, et al. Reduced survival in patients with ALS with upper airway obstructive events on non-invasive ventilation. J Neurol Neurosurg Psychiatry. 2016;87(10):1045–50.

    Article  PubMed  Google Scholar 

  101. Quaranta VN, Carratù P, Damiani MF, et al. The prognostic role of obstructive sleep apnea at the onset of amyotrophic lateral sclerosis. Neurodegener Dis. 2017;17(1):14–21.

    Article  CAS  PubMed  Google Scholar 

  102. Bianchi ML, Losurdo A, Di Blasi C, et al. Prevalence and clinical correlates of sleep disordered breathing in myotonic dystrophy types 1 and 2. Sleep Breath. 2014;18(3):579–89.

    Article  PubMed  Google Scholar 

  103. Laberge L, Dauvilliers Y, Bégin P, Richer L, Jean S, Mathieu J. Fatigue and daytime sleepiness in patients with myotonic dystrophy type 1: to lump or split? Neuromuscul Disord. 2009;19(6):397–402.

    Article  PubMed  Google Scholar 

  104. van der Meche FG, Bogaard JM, van der Sluys JC, Schimsheimer RJ, Ververs CC, Busch HF. Daytime sleep in myotonic dystrophy is not caused by sleep apnoea. J Neurol Neurosurg Psychiatry. 1994;57(5):626–8.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Ono S, Takahashi K, Jinnai K, et al. Loss of catecholaminergic neurons in the medullary reticular formation in myotonic dystrophy. Neurology. 1998;51(4):1121–4.

    Article  CAS  PubMed  Google Scholar 

  106. Atalaia A, De Carvalho M, Evangelista T, Pinto A. Sleep characteristics of amyotrophic lateral sclerosis in patients with preserved diaphragmatic function. Amyotroph Lateral Scler. 2007;8(2):101–5.

    Article  PubMed  Google Scholar 

  107. de Carvalho M, Costa J, Pinto S, Pinto A. Percutaneous nocturnal oximetry in amyotrophic lateral sclerosis: periodic desaturation. Amyotroph Lateral Scler. 2009;10(3):154–61.

    Article  PubMed  Google Scholar 

  108. Sancho J, Burés E, Ferrer S, Ferrando A, Bañuls P, Servera E. Unstable control of breathing can lead to ineffective noninvasive ventilation in amyotrophic lateral sclerosis. ERJ Open Res. 2019;5(3):00099-2019.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Benditt JO. Respiratory care of patients with neuromuscular disease. Respir Care. 2019;64(6):679–88.

    Article  PubMed  Google Scholar 

  110. McSharry DG, Ryan S, Calverley P, Edwards JC, McNicholas WT. Sleep quality in chronic obstructive pulmonary disease. Respirology. 2012;17(7):1119–24.

    Article  PubMed  Google Scholar 

  111. Omachi TA, Blanc PD, Claman DM, et al. Disturbed sleep among COPD patients is longitudinally associated with mortality and adverse COPD outcomes. Sleep Med. 2012;13(5):476–83.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Shorofsky M, Bourbeau J, Kimoff J, et al. Impaired sleep quality in COPD is associated with exacerbations: the CanCOLD cohort study. Chest. 2019;156(5):852–63.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jolley CJ, Luo YM, Steier J, et al. Neural respiratory drive in healthy subjects and in COPD. Eur Respir J. 2009;33(2):289–97.

    Article  CAS  PubMed  Google Scholar 

  114. Kwon JS, Wolfe LF, Lu BS, Kalhan R. Hyperinflation is associated with lower sleep efficiency in COPD with co-existent obstructive sleep apnea. COPD. 2009;6(6):441–5.

    Article  PubMed  Google Scholar 

  115. O’Donoghue FJ, Catcheside PG, Eckert DJ, McEvoy RD. Changes in respiration in NREM sleep in hypercapnic chronic obstructive pulmonary disease. J Physiol. 2004;559(2):663–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Costello R, Deegan P, Fitzpatrick M, McNicholas WT. Reversible hypercapnia in chronic obstructive pulmonary disease: a distinct pattern of respiratory failure with a favorable prognosis. Am J Med. 1997;102(3):239–44.

    Article  CAS  PubMed  Google Scholar 

  117. O'Donoghue FJ, Catcheside PG, Ellis EE, et al. Sleep hypoventilation in hypercapnic chronic obstructive pulmonary disease: prevalence and associated factors. Eur Respir J. 2003;21(6):977–84.

    Article  CAS  PubMed  Google Scholar 

  118. Holmedahl NH, Overland B, Fondenes O, Ellingsen I, Hardie JA. Sleep hypoventilation and daytime hypercapnia in stable chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2014;9:265–75.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kitajima T, Marumo S, Shima H, et al. Clinical impact of episodic nocturnal hypercapnia and its treatment with noninvasive positive pressure ventilation in patients with stable advanced COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:843–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kohnlein T, Windisch W, Kohler D, et al. Non-invasive positive pressure ventilation for the treatment of severe stable chronic obstructive pulmonary disease: a prospective, multicentre, randomised, controlled clinical trial. Lancet Respir Med. 2014;2(9):698–705.

    Article  PubMed  Google Scholar 

  121. Murphy PB, Rehal S, Arbane G, et al. Effect of home noninvasive ventilation with oxygen therapy vs oxygen therapy alone on hospital readmission or death after an acute COPD exacerbation: a randomized clinical trial. JAMA. 2017;317(21):2177–86.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Struik FM, Lacasse Y, Goldstein RS, Kerstjens HAM, Wijkstra PJ. Nocturnal noninvasive positive pressure ventilation in stable COPD: a systematic review and individual patient data meta-analysis. Respir Med. 2014;108(2):329–37.

    Article  CAS  PubMed  Google Scholar 

  123. Windisch W, Geiseler J, Simon K, Walterspacher S, Dreher M. German national guideline for treating chronic respiratory failure with invasive and non-invasive ventilation - revised edition 2017: part 2. Respiration. 2018;96(2):171–203.

    Article  PubMed  Google Scholar 

  124. Ergan B, Oczkowski S, Rochwerg B, et al. European Respiratory Society guidelines on long-term home non-invasive ventilation for management of COPD. Eur Respir J. 2019;54(3):1901003.

    Article  PubMed  Google Scholar 

  125. Crummy F, Piper AJ, Naughton MT. Obesity and the lung: 2. Obesity and sleep-disordered breathing. Thorax. 2008;63(8):738–46.

    Article  CAS  PubMed  Google Scholar 

  126. Marin JM, Soriano JB, Carrizo SJ, Boldova A, Celli BR. Outcomes in patients with chronic obstructive pulmonary disease and obstructive sleep apnea. The overlap syndrome. Am J Respir Crit Care Med. 2010;182(3):325–31.

    Article  PubMed  Google Scholar 

  127. Shawon MS, Perret JL, Senaratna CV, Lodge C, Hamilton GS, Dharmage SC. Current evidence on prevalence and clinical outcomes of co-morbid obstructive sleep apnea and chronic obstructive pulmonary disease: a systematic review. Sleep Med Rev. 2017;32:58–68.

    Article  PubMed  Google Scholar 

  128. Soler X, Gaio E. High prevalence of obstructive sleep apnea in patients with moderate to severe chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2015;12(8):1219–25.

    PubMed  PubMed Central  Google Scholar 

  129. He BT, Lu G, Xiao SC, et al. Coexistence of OSA may compensate for sleep related reduction in neural respiratory drive in patients with COPD. Thorax. 2017;72(3):256–62.

    Article  PubMed  Google Scholar 

  130. Messineo L, Lonni S, Magri R, et al. Lung air trapping lowers respiratory arousal threshold and contributes to sleep apnea pathogenesis in COPD patients with overlap syndrome. Respir Physiol Neurobiol. 2020;271:103315.

    Article  PubMed  Google Scholar 

  131. Konikkara J, Tavella R, Willes L, Kavuru M, Sharma S. Early recognition of obstructive sleep apnea in patients hospitalized with COPD exacerbation is associated with reduced readmission. Hosp Pract (1995). 2016;44(1):41–7.

    Article  Google Scholar 

  132. Jaoude P, Kufel T, El-Solh A. Survival benefit of CPAP favors hypercapnic patients with the overlap syndrome. Lung. 2014;192(2):251–8.

    Article  PubMed  Google Scholar 

  133. Kuklisova Z, Tkacova R, Joppa P, Wouters E, Sastry M. Severity of nocturnal hypoxia and daytime hypercapnia predicts CPAP failure in patients with COPD and obstructive sleep apnea overlap syndrome. Sleep Med. 2017;30:139–45.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda J. Piper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piper, A.J. (2022). Sleep and Hypoventilation. In: Badr, M.S., Martin, J.L. (eds) Essentials of Sleep Medicine. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-93739-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93739-3_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-93738-6

  • Online ISBN: 978-3-030-93739-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics