Skip to main content

Inferring in Circles: Active Inference in Continuous State Space Using Hierarchical Gaussian Filtering of Sufficient Statistics

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021)

Abstract

We create a continuous state space active inference agent based on the hierarchical Gaussian filter. It uses the HGF to track the sufficient statistics of noisy observations of a moving target that is performing a Gaussian random walk with drift and varying volatility. On the basis of this filtering, the agent predicts the target’s position, and minimizes surprisal by staying close to it. Our simulated agent represents the first full implementation of this approach. It demonstrates the feasibility of supplementing active inference with HGF-filtering of the sufficient statistics of observations, which is particularly useful in noisy and volatile continuous state space environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Çatal, O., Wauthier, S., De Boom, C., Verbelen, T., Dhoedt, B.: Learning generative state space models for active inference. Front. Comput. Neurosci. 14, 103 (2020)

    Article  Google Scholar 

  2. Friston, K.: A free energy principle for a particular physics. arXiv preprint arXiv:1906.10184 (2019)

  3. Friston, K., Adams, R., Perrinet, L., Breakspear, M.: Perceptions as hypotheses: saccades as experiments. Front. Psychol. 3, 151 (2012)

    Google Scholar 

  4. Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., Pezzulo, G.: Active inference and learning. Neurosci. Biobehav. Rev. 68, 862–879 (2016). https://doi.org/10.1016/j.neubiorev.2016.06.022

    Article  MATH  Google Scholar 

  5. Friston, K., Frith, C.: A duet for one. Conscious. Cogn. 36, 390–405 (2015)

    Article  Google Scholar 

  6. Friston, K., Kiebel, S.: Predictive coding under the free-energy principle. Philos. Trans. R. Soc. B Biol. Sci. 364(1521), 1211–1221 (2009)

    Article  Google Scholar 

  7. Friston, K.J., Daunizeau, J., Kiebel, S.J.: Reinforcement Learning or Active Inference? PLoS ONE 4(7), e6421 (2009). https://doi.org/10.1371/journal.pone.0006421

  8. Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-energy formulation. Biol. Cybern. 102(3), 227–260 (2010). https://doi.org/10.1007/s00422-010-0364-z

    Article  Google Scholar 

  9. Friston, K.J., Parr, T., de Vries, B.: The graphical brain: belief propagation and active inference. Netw. Neurosci. 1(4), 381–414 (2017)

    Article  Google Scholar 

  10. Friston, K.J., Sajid, N., Quiroga-Martinez, D.R., Parr, T., Price, C.J., Holmes, E.: Active listening. Hear. Res. 399, 107998 (2021)

    Article  Google Scholar 

  11. Van de Maele, T., Verbelen, T., Çatal, O., De Boom, C., Dhoedt, B.: Active vision for robot manipulators using the free energy principle. Front. Neurorobotics 15, 14 (2021)

    Google Scholar 

  12. Mathys, C., Daunizeau, J., Friston, K.J., Stephan, K.E.: A Bayesian foundation for individual learning under uncertainty. Front. Hum. Neurosci. 5, 39 (2011). https://doi.org/10.3389/fnhum.2011.00039

    Article  Google Scholar 

  13. Mathys, C., et al.: Uncertainty in perception and the hierarchical gaussian filter. Front. Hum. Neurosci. 8, 825 (2014). https://doi.org/10.3389/fnhum.2014.00825

    Article  Google Scholar 

  14. Mathys, C., Weber, L.: Hierarchical gaussian filtering of sufficient statistic time series for active inference. In: IWAI 2020. CCIS, vol. 1326, pp. 52–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64919-7_7

    Chapter  Google Scholar 

  15. Parr, T., Friston, K.J.: The discrete and continuous brain: from decisions to movement-and back again. Neural Comput. 30(9), 2319–2347 (2018)

    Article  MathSciNet  Google Scholar 

  16. Şenöz, İ., De Vries, B.: Online variational message passing in the hierarchical gaussian filter. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2018)

    Google Scholar 

  17. Şenöz, İ., de Vries, B.: Online message passing-based inference in the hierarchical gaussian filter. In: 2020 IEEE International Symposium on Information Theory (ISIT), pp. 2676–2681. IEEE (2020)

    Google Scholar 

  18. Smith, R., Friston, K., Whyte, C.: A step-by-step tutorial on active inference and its application to empirical data. PsyArXiv (2021)

    Google Scholar 

  19. Tschantz, A., Baltieri, M., Seth, A.K., Buckley, C.L.: Scaling active inference. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  20. Weber, Lilian, A.E.: Perception as Hierarchical Bayesian Inference - Toward Non-Invasive Readouts of Exteroceptive and Interoceptive Processing. Doctoral thesis, ETH Zurich (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Thestrup Waade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Waade, P.T., Mikus, N., Mathys, C. (2021). Inferring in Circles: Active Inference in Continuous State Space Using Hierarchical Gaussian Filtering of Sufficient Statistics. In: Kamp, M., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol 1524. Springer, Cham. https://doi.org/10.1007/978-3-030-93736-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93736-2_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93735-5

  • Online ISBN: 978-3-030-93736-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics