Skip to main content

Tempera: Spatial Transformer Feature Pyramid Network for Cardiac MRI Segmentation

Part of the Lecture Notes in Computer Science book series (LNIP,volume 13131)


Assessing the structure and function of the right ventricle (RV) is important in the diagnosis of several cardiac pathologies. However, it remains more challenging to segment the RV than the left ventricle (LV). In this paper, we focus on segmenting the RV in both short (SA) and long-axis (LA) cardiac MR images simultaneously. For this task, we propose a new multi-input/output architecture, hybrid 2D/3D geometric spatial TransformEr Multi-Pass fEature pyRAmid (Tempera). Our feature pyramid extends current designs by allowing not only a multi-scale feature output but multi-scale SA and LA input images as well. Tempera transfers learned features between SA and LA images via layer weight sharing and incorporates a geometric target transformer to map the predicted SA segmentation to LA space. Our model achieves an average Dice score of 0.836 and 0.798 for the SA and LA, respectively, and 26.31 mm and 31.19 mm Hausdorff distances. This opens up the potential for the incorporation of RV segmentation models into clinical workflows.


  • Cardiac MRI
  • Right Ventricle
  • Segmentation
  • Multi-view
  • 2D/3D network
  • Spatial transformer
  • Feature pyramid

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Attili, A., Schuster, A., Nagel, E., et al.: Quantification in cardiac MRI: advances in image acquisition and processing. Int. J. Cardiovasc. Imaging 26(Suppl. 1), 27–40 (2010).

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., et al.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    CrossRef  Google Scholar 

  3. Bonnemains, L., Mandry, D., Marie, P., et al.: Assessment of right ventricle volumes and function by cardiac MRI: quantification of the regional and global interobserver variability. Magn. Reson. Med. 67, 1740–1746 (2012)

    CrossRef  Google Scholar 

  4. Campello, V.M., Gkontra, P., Izquierdo, C., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&Ms challenge. IEEE Trans. Med. Imaging 40(12), 3543–3554 (2021).

  5. Caudron, J., Fares, J., Vivier, P., et al.: Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac mri in patients with acquired heart disease. Eur. Radiol. 21, 2111–2120 (2011)

    CrossRef  Google Scholar 

  6. Caudron, J., Fares, J., Lefebvre, V., et al.: Cardiac MR assessment of right ventricular function in acquired heart disease: factors of variability. Acad Radiol. 19(8), 991–1002 (2012)

    CrossRef  Google Scholar 

  7. Chen, C., Biffi, C., Tarroni, G., Petersen, S., Bai, W., Rueckert, D.: Learning shape priors for robust cardiac MR segmentation from multi-view images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 523–531. Springer, Cham (2019).

    CrossRef  Google Scholar 

  8. Friedberg, M., Redington, A.: Right versus left ventricular failure differences, similarities, and interactions. Circulation 129, 1033–1044 (2014)

    CrossRef  Google Scholar 

  9. Full, P.M., Isensee, F., Jäger, P.F., Maier-Hein, K.: Studying robustness of semantic segmentation under domain shift in cardiac MRI. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 238–249. Springer, Cham (2021).

    CrossRef  Google Scholar 

  10. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

    Google Scholar 

  12. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: 31st International Conference on Neural Information Processing Systems, pp. 972–981. NIPS 2017. Curran Associates Inc. (2017)

    Google Scholar 

  13. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012).

    CrossRef  Google Scholar 

  14. Lin, T.Y., Dollár, P., Girshick, R., et al.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2017).

  15. Lin, T.Y., Goyal, P., Girshick, R., et al.: Focal loss for dense object detection (2018)

    Google Scholar 

  16. Martín-Isla, C., Palomares, J.F.R., Guala, A., et al.: Multi-disease, multi-view & multi-center right ventricular segmentation in cardiac MRI (M&Ms-2), March 2021.

  17. Petitjean, C., Zuluaga, M.A., Bai, W., et al.: Right ventricle segmentation from cardiac MRI: a collation study. Med. Image Anal. 19(1), 187–202 (2015)

    CrossRef  Google Scholar 

  18. Zhu, W., Huang, Y., Zeng, L., et al.: AnatomyNet: deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med. Phys. 46(2), 576–589 (2019)

    CrossRef  Google Scholar 

Download references


This work was supported by the UKRI CDT in AI for Healthcare (Grant No. EP/S023283/1) and the British Heart Foundation Centre of Research Excellence at Imperial College London (RE/18/4/34215).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christoforos Galazis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Galazis, C., Wu, H., Li, Z., Petri, C., Bharath, A., Varela, M. (2022). Tempera: Spatial Transformer Feature Pyramid Network for Cardiac MRI Segmentation. In: Puyol Antón, E., et al. Statistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge. STACOM 2021. Lecture Notes in Computer Science(), vol 13131. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93721-8

  • Online ISBN: 978-3-030-93722-5

  • eBook Packages: Computer ScienceComputer Science (R0)