Skip to main content

Smart City Planning Based on Landslide Susceptibility Mapping Using Fuzzy Logic and Multi-criteria Evaluation Techniques in the City of Quito, Ecuador

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 846)

Abstract

Landslides are the most recurrent natural hazards in the Metropolitan District of Quito (DMQ), affecting sometimes lives but extremely frequently and severely the traffic and associated infrastructure. The present research proposes the calculation of the landslide susceptibility cartographic model in the city of Quito and its main highway, the Simón Bolívar avenue, using the Fuzzy logic and multicriteria evaluation techniques in geographic information systems (GIS). Based on the “Today and the past son key to the future” principle, landslides have been located using aerial photographs and field work. Based on the characteristics of historical landslides, photointerpreted and previous studies, the causal factors have been variable such as topography, structural geology, lithology, precipitation, water network, vegetation cover, among others. Each factor has been processed, analyzed and standardized according to its relationship to the occurrence of landslides, by means of a sinusoidal linked function that assigns to each element a degree of correlation [0, 1] to the diffuse set. The landslide vulnerability map has been obtained from the combination of causal factors by map algebra, such as weighting techniques that include the hierarchical analysis process (HAP) and the weighted linear line (WLL), whose validation considered the locations of inventoried landslides.

Keywords

  • Landslide susceptibility map
  • Fuzzy logic
  • GIS
  • Simón Bolívar highway
  • Quito

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-93718-8_8
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-93718-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Álcantara-Ayala, I., Esteban-Chavez, O., Parrot, J.: Landsliding related to land-cover change: A diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla Mexico. CATnENA 65, 152–165 (2006)

    CrossRef  Google Scholar 

  2. Lacasse, S., Nadim, F., Kalsnes, B.: Living with landslide risk. Geotech. Eng. J. SEAGS AGSSEA 41(4), 13 (2010)

    Google Scholar 

  3. Rajakumar, R., Sanjeevi, S., Jayaseelan, S.: Landslide susceptibility mapping in a hilly terrain using remote sensing and GIS. J. Indian Soc. Remote Sens. 35, 31–42 (2007)

    CrossRef  Google Scholar 

  4. Andersson-Sköld, Y., Bergman, R., Johansson, M.: Landslide risk management—a brief overview and example from Sweden of current situation and climate change. Int. J. Disast. Risk Reduct. 3, 44–61 (2013)

    CrossRef  Google Scholar 

  5. Grahn, T., Jaldell, H.: Assessment of data availability for the development of landslide fatality curves. Landslides 14(3), 1113–1126 (2016). https://doi.org/10.1007/s10346-016-0775-6

    CrossRef  Google Scholar 

  6. Park, S., Choi, C., Kim, B.: Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area Korea. Environ. Earth Sci. 68, 1443–1464 (2013)

    CrossRef  Google Scholar 

  7. Bai, S.-B., Wang, J., Lü, G.-N.: GIS-Based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three Gorges area. China. Geomorphol. 115, 23–31 (2010)

    CrossRef  Google Scholar 

  8. Castellanos Abella, E., Van Westen, C.J.: Generation of a landslide risk index map for Cuba using spatial multi - criteria evaluation. Landslides 4, 311–325 (2007)

    CrossRef  Google Scholar 

  9. Chiessi, V., Toti, S., Vitale, V.: Landslide susceptibility assessment using conditional analysis and rare events logistics regression: a case - study in Antrodoco Area (Rieti, Italy). J. Geosci. Environ. Protect. 4(12), 1–21 (2016)

    CrossRef  Google Scholar 

  10. Isik, Y.: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Comput. Geosci. 35, 1125–1138 (2009)

    CrossRef  Google Scholar 

  11. Falaschi, F., Giacomelli, F., Federici, P.: Logistic regression versus artificial neural networks: Landslide susceptibility evaluation in a sample area of the Serchio River valley. Italy. Nat. Hazards 50, 551–569 (2009)

    CrossRef  Google Scholar 

  12. Pradhan, B., Lee, S.: Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 25, 747–759 (2010)

    CrossRef  Google Scholar 

  13. Saro, L., Woo, J.S., Kwan-Young, O.: The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: a case study of Inje. Korea. Open Geosci. 8, 117–132 (2016)

    Google Scholar 

  14. Bayes, A.: Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area Bangladesh. Landslides 12, 1077–1095 (2015)

    CrossRef  Google Scholar 

  15. Feizizadeh, B., Blaschke, T.: GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin. Iran. Nat. Hazards 65(3), 2105–2128 (2013)

    CrossRef  Google Scholar 

  16. Brabb, E.: Innovative approaches to landslide hazard and risk mapping. In: 4th International Symposium on Landslides, pp. 307–323 (1984)

    Google Scholar 

  17. Hervás, J., Barredo, J., Lomoschitz, A.: Elaboración de mapas de susceptibilidad de deslizamientos mediante SIG, pp. 169–180. Teledetección y Metódos de evaluación multicriterio.Aplicación a la depresión de Tirajana (Gran Canaria). Instituto Geológico y Minero de España (2012)

    Google Scholar 

  18. Andersson-Skold, Y., Falemo, S., Trembaly, M.: Development of methodology for quantitative landslide risk assessment-Example Gota river valley. Nat. Sci. 6, 130–143 (2014)

    Google Scholar 

  19. Dahal, B.K., Dahal, R.K.: Landslide hazard map: tool for optimization of low-cost mitigation. Geoenviron. Disast. 4(1), 1–9 (2017). https://doi.org/10.1186/s40677-017-0071-3

    CrossRef  Google Scholar 

  20. Brabb, E.: Proposal for worldwide landslide hazard maps. In: Proceedings of 7th International Conference and Field Workshop on Landslide in Czech and Slovak Republics, pp. 15–27 (1993)

    Google Scholar 

  21. Pardeshi, S.D., Autade, S.E., Pardeshi, S.S.: Landslide hazard assessment: recent trends and techniques. Springerplus 2(1), 1–11 (2013). https://doi.org/10.1186/2193-1801-2-523

    CrossRef  Google Scholar 

  22. INIGEMM (Instituto Nacional de Investigación Geológico Minero Metalúrgico) (1978–1980). Geologic maps in a scale of 1:50000 of: Quito (1978), Sangolquí (1980) and El Quinche (1980). http://www.geoinvestigacion.gob.ec/mapas-tematicos-1-50-000/

  23. Moreano, M.: La Biografía Secreta De Las Aguas Quiteñas. Ecuador terra incognita 65, 10–19 (2010)

    Google Scholar 

  24. Reinoso Chisaguano, I.C.: Evaluación Ambiental Del Río Machángara. Unpubl. Thesis Escuela Politécnica Nacional, Quito, Ecuador, 178pp (2015)

    Google Scholar 

  25. Secretaría de Seguridad y Gobernabilidad del DMQ: Atlas De Amenazas Naturales y Exposición De Infraestructura Del Distrito Metropolitano De Quito (vol. Segunda Edición). Quito, Ecuador, 126pp (2015)

    Google Scholar 

  26. El Comercio: La Mariscal Sucre, Segundo Puesto En El ‘Top Ten’ De Las Más Transitadas De Quito. http://www.elcomercio.com/actualidad/quito-transito-avmariscalsucre-congestion.html (2015)

  27. El Telégrafo: La EPMMOP Estabilizará Dos Taludes En Av. Simón Bolívar. http://www.eltelegrafo.com.ec/noticias/quito/11/la-epmmop-estabilizara-dos-taludes-en-av-simon-bolivar (2013)

  28. Toulkeridis, T., Rodríguez, F., Arias Jiménez, N.: Causes and consequences of the sinkhole at El Trébol of Quito, Ecuador – implications for economic damage and risk assessment. Nat. Hazards Earth Syst. Sci. 16, 2031–2041 (2016)

    CrossRef  Google Scholar 

  29. El Comercio: Estudios En La Forestal No Terminan (2011). http://www.elcomercio.com/actualidad/quito/estudios-forestal-no-terminan.html

  30. Prensa Alcaldía de Quito: Municipio Atiende Emergencias Por Deslizamientos (2017). http://prensa.quito.gob.ec/index.php?module=Noticias&func=news_user_view&id=25751&umt=Municipio%20atiende%20emergencias%20por%20deslizamientos

  31. El Universo: Municipio De Quito Destinó Más De 15 Millones De Dólares Para La Época Invernal (2017). http://www.eluniverso.com/noticias/2017/06/11/nota/6227731/municipio-quito-destino-mas-15-millones-dolares-epoca-invernal

  32. Ciampalini, A., Raspini, F., Bianchini, S.: A landslide susceptibility map of the Messina Province (Sicily, Italy). Landslides and engineered slopes. Exp. Theory Pract. 1, 657–661 (2016)

    Google Scholar 

  33. Zafrir Vallejo, R., Padilla Almeida, O., Cruz D’Howitt, M.: Numerical probability modeling of past, present and future landslide occurrences in Northern Quito, Ecuador – economic implications and risk assessment”. In: 5th International Conference on eDemocracy and eGovernment, ICEDEG 2018, pp. 117–125 (2018)

    Google Scholar 

  34. Palacios Orejuela, I., Toulkeridis, T.: Evaluation of the susceptibility to landslides through diffuse logic and analytical hierarchy process (AHP) between Macas and Riobamba in Central Ecuador. In: 7th International Conference on eDemocracy and eGovernment, ICEDEG 2020, pp. 201–207 (2020)

    Google Scholar 

  35. Maryam, I.: A comparative study of fuzzy logic approach for landslide susceptibility mapping using GIS: an experience of Karaj dam basin in Iran. Procedia Soc. Behav. Sci. 19, 668–676 (2011)

    CrossRef  Google Scholar 

  36. Singh, A.K.: Bioengineering techniques of slope stabilization and landslide mitigation. Disast. Prev. Manag. Int. J. 19, 384–397 (2010)

    CrossRef  Google Scholar 

  37. Biju Abraham, P., Shaji, E.: Landslide hazard zonation in and around Thodupuzha-Idukki-Munnar road, Idukki district, Kerala: a geospatial approach. J. Geol. Soc. India 82(6), 649–656 (2013). https://doi.org/10.1007/s12594-013-0203-7

    CrossRef  Google Scholar 

  38. Sepúlveda, S., Petley, D.: Regional trends and controlling factors of fatal landslides in Latin America and the Caribbean. Nat. Hazard Earth Syst. Sci. 15(8), 1821–1833 (2015)

    CrossRef  Google Scholar 

  39. Silvers, K., Griffiths, J.: Landslide Affecting the Vía Interoceánica, IAEG2006 Paper number 234: 8pp. East of Quito, Ecuador (2006)

    Google Scholar 

  40. Fookes, P., Sweeney, M., Manby, C.: Geological and geotechnical engineering aspects of low-cost roads in mountainous terrain. Eng. Geol. 21, 1–152 (1985)

    CrossRef  Google Scholar 

  41. Cantuña, J.G., Bastidas, D., Solórzano, S.: Design and implementation of a wireless sensor network to detect forest fires. In: 2017 4th International Conference on eDemocracy and eGovernment, ICEDEG 201729 June 2017, Article number 7962508, pp. 15–21 (2017)

    Google Scholar 

  42. Jaramillo Castelo, C.A., Padilla, O., Cruz D´Howitt, M.: Comparative determination of the probability of landslide occurrences and susceptibility in central Quito, Ecuador. In: 5th International Conference on eDemocracy and eGovernment, ICEDEG 2018, pp. 136–143 (2018)

    Google Scholar 

  43. Loarte Merino, G.V. Determinación de zonas susceptibles a movimientos en masa por factores condicionantes y desencadenantes en la parroquia Lloa, del cantón Quito en la provincia de Pichincha. Unpublished thesis. 100 pp. Universidad San Francisco de Quito, Cumbaya, Ecuador (2013)

    Google Scholar 

  44. UNESCO – ROSTALC: Guía Metodológica Para La Elaboración Del Balance Hídrico Para América Del Sur. Montevideo, Uruguay: Oficina Regional de Ciencia y Tecnología de la UNESCO para América Latina y el Caribe (1982). http://www.unesco.org.uy/phi/biblioteca/files/original/4028d09481fd2531c30f5cd6660298c3.pdf

  45. Monsalve, G.: Hidrología En La Ingeniería, 2da edn. 358pp. Alfaomega, Colombia (2009)

    Google Scholar 

  46. Malczewski, J.: A GIS-based approach to multiple criteria group decision-making. Int. J. Geogr. Inf. Syst. 10, 955–971 (1996)

    CrossRef  Google Scholar 

  47. Eastman, J.R.: The IDRISI Selva Tutorial Manual Version 17, 354pp. Clark Labs, Clark University (2012)

    Google Scholar 

  48. Aviles-Campoverde, D., Chunga, K., Ortiz-Hernández, E.: Seismically induced soil liquefaction and geological conditions in the city of Jama due to the Mw7.8 Pedernales earthquake in 2016, NW Ecuador. Geosciences 11, 20 (2021)

    Google Scholar 

  49. Anbalagan, R.: Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng. Geol 32(4), 269–277 (1992)

    CrossRef  Google Scholar 

  50. Rodriguez, F., Toulkeridis, T., Padilla, O., Mato, F.: Economic risk assessment of Cotopaxi volcano Ecuador in case of a future lahar emplacement. Nat. Hazards 85(1), 605–618 (2017)

    CrossRef  Google Scholar 

  51. Toulkeridis, T., Zach, I.: Wind directions of volcanic ash-charged clouds in Ecuador – Implications for the public and flight safety. Geom. Nat. Hazards Risks 8(2), 242–256 (2017)

    CrossRef  Google Scholar 

  52. Toulkeridis, T.: The Evaluation of unexpected results of a seismic hazard applied to a modern hydroelectric center in central Ecuador. J. Struct. Eng. 43(4), 373–380 (2016)

    Google Scholar 

  53. Toulkeridis, T., et al.: Causes and consequences of the sinkhole at El Trébol of Quito, Ecuador - Implications for economic damage and risk assessment. Nat. Hazards Earth Sci. Syst. 16, 2031–2041 (2016)

    Google Scholar 

  54. Toulkeridis, T., et al.: Two independent real-time precursors of the 7.8 Mw earthquake in Ecuador based on radioactive and geodetic processes—powerful tools for an early warning system. J. Geodyn. 126, 12–22 (2019)

    Google Scholar 

  55. Segura-Alcívar, M., Rodriguez-Espinoza, F., Toulkeridis, T.: Potential risk analysis of fuel storages in central Quito, Ecuador. In: Proceedings of the International Conference on Natural Hazards and Infrastructure 2019, 2nd International Conference on Natural Hazards and Infrastructure, ICONHIC 2019; Chania; Greece; 23 June 2019 through 26 June 2019; Code 257429 (2019)

    Google Scholar 

  56. Toulkeridis, T., et al.: A potential early warning system for earthquakes based on two independent real-time precursors – the case of Ecuador’s 7.8 Mw in 2016. In: Proceedings of the International Conference on Natural Hazards and Infrastructure 2019, 2nd International Conference on Natural Hazards and Infrastructure, ICONHIC 2019; Chania; Greece; 23 June 2019 through 26 June 2019; Code 257429 (2019)

    Google Scholar 

  57. INAMHI. Anuario meteorológico. Instituto Nacional de Meteorología e Hidrología (2017). http://www.inamhi.gob.ec/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theofilos Toulkeridis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Salcedo, D., Padilla Almeida, O., Morales, B., Toulkeridis, T. (2022). Smart City Planning Based on Landslide Susceptibility Mapping Using Fuzzy Logic and Multi-criteria Evaluation Techniques in the City of Quito, Ecuador. In: Berrezueta, S., Abad, K. (eds) Doctoral Symposium on Information and Communication Technologies - DSICT. Lecture Notes in Electrical Engineering, vol 846. Springer, Cham. https://doi.org/10.1007/978-3-030-93718-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93718-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93717-1

  • Online ISBN: 978-3-030-93718-8

  • eBook Packages: EngineeringEngineering (R0)