Waas, T., Hugé, J., Verbruggen, A., Wright, T.: Sustainable development: a bird’s eye view. Sustainability 3(10), 1637–1661 (2011)
CrossRef
Google Scholar
Sachs, J., Schmidt-Traub, G., Kroll, C., Durand-Declare, D., Teksoz, K.: SDG index and dashboards - global report. Bertelsmann Stiftung and Sustainable Development Solutions Network (SDSN), New York. https://www.sdgindex.org/reports/sdg-index-and-dashboards-2016/
Deeplizard: Machine Learning & Deep Learning Fundamentals, 21 November 2017
Google Scholar
Zhu, Q., Zhang, R.: A classification supervised auto-encoder based on predefined evenly-distributed class centroids. arXiv:1902.00220v3 [cs.CV] (2020)
Fu, H., Lei, P., Tao, H., Zhao, L., Yang, J.: Improved semi-supervised autoencoder for deception detection. PLoS One 14(10). https://doi.org/10.1371/journal.pone.0223361
Fu, X., et al.: Semi-supervised aspect-level sentiment classification model based on variational autoencoder. Knowl.-Based Syst. 171, 81–92 (2019). https://doi.org/10.1016/j.knosys.2019.02.008
CrossRef
Google Scholar
Zhu, Q., Li, T.: Semi-supervised learning method based on predefined evenly-distributed class centroids. Appl. Intell. 50, 2770–2778 (2020). https://doi.org/10.1007/s10489-020-01689-1
CrossRef
Google Scholar
Chorowski, J., Weiss, R.J., Bengio, S., van den Oord, A.: Unsupervised speech representation learning using WaveNet autoencoders. IEEE/ACM Trans. Audio Speech Lang. Process. 27(12), 2041–2053 (2019). https://doi.org/10.1109/TASLP.2019.2938863
CrossRef
Google Scholar
Yusiong, J.P.T., Naval, P.C.: AsiANet: autoencoders in autoencoder for unsupervised monocular depth estimation. In: Proceedings - 2019 IEEE Winter Conference on Applications of Computer Vision, WACV 2019, pp. 443–451 (2019). https://doi.org/10.1109/WACV.2019.00053
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–27 (2009). https://doi.org/10.1561/2200000006
MathSciNet
CrossRef
MATH
Google Scholar
Sarkar, D., Bali, R., Sharma, T.: Practical Machine Learning with Python. Apress, Berkeley (2018). https://doi.org/10.1007/978-1-4842-3207-1
CrossRef
Google Scholar
Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of Data (2012). http://2.180.2.83:801/opac/temp/11802.pdf
Rocca, J.: Understanding Variational Autoencoders (VAEs). Building, step by step, the reasoning that leads to VAEs. Towards Data Science (2019). https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3(2), 177–200 (1971)
MathSciNet
CrossRef
Google Scholar
Grigoroudis, E., Kouikoglou, V.S., Phillis, Y.A.: SAFE 2013: Sustainability of countries updated. Ecol. Ind. 38, 61–66 (2014)
CrossRef
Google Scholar
Grigoroudis, E., Kouikoglou, V., Phillis, Y.: SAFE 2019: Updates and new sustainability findings worldwide. Ecol. Ind. 121, 107072 (2019)
CrossRef
Google Scholar
Phillis, Y.A., Grigoroudis, E., Kouikoglou, V.S.: Sustainability ranking and improvement of countries. Ecol. Econ. 70(3), 542–553 (2011)
CrossRef
Google Scholar
Tan, Y., Shuai, C., Jiao, L., Shen, L.: Adaptive neuro-fuzzy inference system approach for urban sustainability assessment: a China case study. Sustain. Dev. 26(6), 749–764 (2018). https://doi.org/10.1002/sd.1744/
CrossRef
Google Scholar