Skip to main content

HydroVLab, Hydrology Virtual Laboratory

  • 49 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 846)

Abstract

Despite the Information and Communication Technology has been widely applied in online and distance learning, there are still topics, that involve the practical application of knowledge, that have not yet been fully resolved by ICTs, especially in the field of Engineering. This paper presents the Hydrology Virtual Laboratory (HydroVLab), an academic initiative that aims to provide tools for the simulation of hydrological phenomena, data analysis and the design of relevant elements in hydraulic and fluvial engineering through the Web. The didactic conception of HydroVLab allows students and researchers to analyze the different hydrological phenomena and their interrelation with their most relevant parameters. For the design, analysis and implementation of this software, the Unified Development Process was used, alongside a robust architecture that manages an assembly in three layers, which is developed under the advanced object-oriented language. This has allowed a flexible and adaptable design, capable of including new elements and performing changes for its expansion and maintenance.

Keywords

  • Hydro VLab
  • Virtual laboratory
  • Hydrology
  • Unified Development Process

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-93718-8_11
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-93718-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

References

  1. Singh, V.P.: Hydrologic modeling: progress and future directions. Geosci. Lett. 5(1), 1–18 (2018). https://doi.org/10.1186/s40562-018-0113-z

    CrossRef  Google Scholar 

  2. Hogg Y., Zhang Y., Khan S.I.: Hydrologic remote sensing: capacity building for sustain

    Google Scholar 

  3. ability and resilience. CRC Press, Boca Raton (2017)

    Google Scholar 

  4. Lakshmi, V.: Remote Sensing of Hydrological Extremes. Springer, Berlin (2017)

    CrossRef  Google Scholar 

  5. Oñate-Valdivieso, F., et al.: Temporal and spatial analysis of precipitation patterns in an Andean region of southern Ecuador using LAWR weather radar. Meteorol. Atmos. Phys. 130(4), 473–484 (2017). https://doi.org/10.1007/s00703-017-0535-8

    CrossRef  Google Scholar 

  6. Mejía-Veintimilla, D., et al.: River discharge simulation in the high Andes of southern Ecuador using high-resolution radar observations and meteorological station data. Remote Sens. 11(23), 2804 (2019)

    CrossRef  Google Scholar 

  7. Maidment, D.R.: Arc Hydro. ESRI Press, Redlands (2002)

    Google Scholar 

  8. Kumar, P., Alameda, J.C., Bajcsy, P., Folk, M., Markus, M.: Hydroinformatics: Data Integrative Approaches in Computation, Analysis, and Modelling. Taylor & Francis, Boca Raton (2006)

    Google Scholar 

  9. Ross, T.J.: Fuzzy Logic with Engineering Applications. John Wiley, New York (2010)

    CrossRef  Google Scholar 

  10. Tayfur, G.: Soft Computing in Water Resources Engineering: Artificial Neural Network, Fuzzy Logic and Genetic Algorithms. WIT Press, Southampton (2012)

    Google Scholar 

  11. Vary, J.P.: Report of the Expert Meeting on Virtual Laboratories, organized by the International Institute of Theoretical and Applied Physics @TAP), Ames. Iowa. UNESCO, Paris (2000)

    Google Scholar 

  12. Infante Jiménez, C.: Propuesta pedagógica para el uso de laboratorios virtuales como actividad complementaria en las asignaturas teórico-prácticas. Rev. Mex. Investig. Educ. 19(62), 917–937 (2014)

    Google Scholar 

  13. Lorandi, A., Hermida, G., Hernández, J., Ladrón de Guevara, E.: Los laboratorios virtuales y laboratorios remotos en la enseñanza de la ingeniería. Revista Internacional de Educación en Ingeniería 4, 24–30 (2011)

    Google Scholar 

  14. Contreras Castro, M.D.: Prácticas académicas de la arquitectura orientada al servicio (SOA). Investigación. e Innovación en Ingeniería 7(1), 60–97 (2019)

    CrossRef  Google Scholar 

  15. Dingman, S.L.: Physical Hydrology, 2da edición. Prentice Hall, New Jersey (2002)

    Google Scholar 

  16. Coronado-Hernández, O.E., Merlano-Sabalza, E., Díaz-Vergara, Z., Coronado-Hernández, J.R.: Selection of hydrological probability distributions for extreme rainfall events in the regions of Colombia. Water 12(5), 1397 (2020)

    CrossRef  Google Scholar 

  17. Chow, V.T., Maidment, D., Mays, L.: Hidrología Aplicada. McGraw-Hill, Bogotá (1994)

    Google Scholar 

  18. Ponce, V.M.: Engineering Hydrology. Prentice Hall, Englewood Cliffs, NJ (1989)

    Google Scholar 

  19. Renard, K.G., Foster, G.R., Weesies, G.A., y Porter, J.P.: Revised universal soil loss equation. J. Soil. Water Conserv. 46, 30–33 (1991)

    Google Scholar 

  20. Wischmeier, W.H., Smith, D.D.: Predicting Rainfall Erosion Losses. Agriculture Handbook 537. United States Department of Agriculture. Science and Education Administration (1978)

    Google Scholar 

  21. Oñate-Valdivieso, F., Sendra, J.B.: Semidistributed hydrological model with scarce information: application to a large south american binational basin. J. Hydrol. Eng. 19(5), 1006–1014 (2014)

    CrossRef  Google Scholar 

  22. Maza, J., García, M.: Transporte de Sedimentos. Instituto de Ingeniería UNAM, México (1996)

    Google Scholar 

  23. Témez, J.R.: Modelo matemático de Transformación Precipitación Aportación. Asociación de Investigación Industrial Eléctrica ASINEL, Madrid (1977)

    Google Scholar 

  24. Estrela Monreal, T. (1999). “Los modelos de simulación integral de cuenca y su utilización en estudios de recursos hídricos”. Ingeniería Civil. 72, p. 83–95. Madrid

    Google Scholar 

  25. Oñate-Valdivieso, F., Bosque-Sendra, J., Sastre-Merlin, A., Ponce, V.M.: Calibration, validation and evaluation of a lumped hydrologic model in a mountain area in Southern Ecuador. Agrociencia 50(8), 945–963 (2016)

    Google Scholar 

  26. Chow, V.T.: Hidráulica de los Canales Abiertos. McGraw-Hill, Bogotá (1994)

    Google Scholar 

  27. Martín Vide, J.P.: Ingeniería Fluvial. Escuela Colombiana de Ingeniería, Bogotá (2000)

    Google Scholar 

  28. Shuja. A.K., Krebs, J.: IBM Rational Unified Process Reference and Certification Guide: Solution Designer. IBM Press/Pearson (2008)

    Google Scholar 

  29. DotNetNuke, Progress with DotNetNuke 4.7.0 > DNN Corp. https://www.dnnsoftware.com/community-blog/cid/135578/progress-with-dotnetnuke-470, Accessed 21 June 2021

  30. La guía sencilla para la diagramación de UML y el modelado de la base de datos. https://www.microsoft.com/es-ww/microsoft-365/business-insights-ideas/resources/guide-to-uml-diagramming-and-database-modeling, Accessed 21 June 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Oñate-Valdivieso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Oñate-Valdivieso, F., Quiñones, S., Fierro, J., Cueva, F. (2022). HydroVLab, Hydrology Virtual Laboratory. In: Berrezueta, S., Abad, K. (eds) Doctoral Symposium on Information and Communication Technologies - DSICT. Lecture Notes in Electrical Engineering, vol 846. Springer, Cham. https://doi.org/10.1007/978-3-030-93718-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93718-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93717-1

  • Online ISBN: 978-3-030-93718-8

  • eBook Packages: EngineeringEngineering (R0)