Skip to main content

Predicting Short-Term Traffic Speed and Speed Drops in the Urban Area of a Medium-Sized European City—A Traffic Control and Decision Support Perspective

  • Chapter
  • First Online:
Intelligent Systems and Applications in Business and Finance

Abstract

Traffic speed and traffic jam prediction are necessary for a successful regulation of traffic flow and also for the prevention of accidents. This chapter contributes to the body of knowledge on traffic characteristics prediction by focusing on the possibilities of traffic speed prediction in an urban area of a medium-sized European city—the Finnish capital of Helsinki. The predictive ability of simple models such as ARIMA-family models, Linear Regression, K-Nearest Neighbor and Extreme Gradient Boosted Tree (XGBoost) is investigated with the prediction horizons of 5, 10 and 15 min. The main goal is to find out if the results provided by these models can be sufficient for traffic control in medium-sized city areas. Open data is obtained from the Finnish Transport Agency and the city of Helsinki is chosen for the purpose of the analysis. Particular attention is paid to the possibilities of predicting sudden speed drops and traffic jams in the highly regulated metropolitan area of Helsinki. Traffic and weather data are considered as inputs and traffic jams are identified from the predicted speed, i.e. using a timeseries approach, and using a classification approach. The results indicate that XGBoost outperforms all the other considered models for all prediction horizons, but the speed drops are clearly underestimated by the timeseries models. On the other hand classification-oriented models such as decision trees seem to be better suited for the prediction of traffic jams (speed drops below 40 km/h) from the same data and provide promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beranova, S., Stoklasa, J., Dudova, I., Markova, D., Kasparova, M., Zemankova, J., Urbanek, T., Talasek, T., Luukka, P., Hrdlicka, M.: A possible role of the Infant/Toddler Sensory Profile in screening for autism: a proof-of-concept study in the specific sample of prematurely born children with birth weights \(<\)1,500 g. Neuropsychiatr. Dis. Treat. 13, 191–200 (2017). https://doi.org/10.2147/NDT.S123066

    Article  Google Scholar 

  2. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control, vol. 66, 5th edn. Wiley, Hoboken (2015)

    Google Scholar 

  3. Chang, Y.C., Chang, K.H., Wu, G.J.: Application of eXtreme gradient boosting trees in the construction of credit risk assessment models for financial institutions. Appl. Soft Comput. J. 73, 914–920 (2018). https://doi.org/10.1016/j.asoc.2018.09.029

    Article  Google Scholar 

  4. Cheng, S., Lu, F., Peng, P., Wu, S.: Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity. Comput. Environ. Urban Syst. 71, 186–198 (2018). https://doi.org/10.1016/j.compenvurbsys.2018.05.009

    Article  Google Scholar 

  5. Cheng, Z., Lu, J., Zhou, H., Zhang, Y., Zhang, L.: Short-term traffic flow prediction: an integrated method of econometrics and hybrid deep learning. IEEE Trans. Intell. Trans. Syst. 1–14 (2021). https://doi.org/10.1109/TITS.2021.3052796

  6. Chung, W., Abdel-Aty, M., Lee, J.: Spatial analysis of the effective coverage of land-based weather stations for traffic crashes. Appl. Geogr. 90, 17–27 (2018). https://doi.org/10.1016/j.apgeog.2017.11.010

    Article  Google Scholar 

  7. Dahal, K., Almejalli, K., Hossain, M.A.: Decision support for coordinated road traffic control actions. Dec. Sup. Syst. 54(2), 962–975 (2013). https://doi.org/10.1016/j.dss.2012.10.022

    Article  Google Scholar 

  8. Dinov, I.D.: Data science and Predictive Analytics: Biomedical and Health Applications Using R. Springer, Michigan (2018). https://doi.org/10.1007/978-3-319-72347-1

  9. Dougherty, M.S., Cobbett, M.R.: Short-term inter-urban traffic forecasts using neural networks. Int. J. Forecast. 13(1), 21–31 (1997). https://doi.org/10.1016/S0169-2070(96)00697-8

    Article  Google Scholar 

  10. Dunne, S., Ghosh, B.: Regime-Based short-term multivariate traffic condition forecasting algorithm. J. Transp. Eng. 138(4), 455–466 (2012). https://doi.org/10.1061/(asce)te.1943-5436.0000337

    Article  Google Scholar 

  11. FMI: The finnish meteorological institute’s open data. Technical report, Finnish Meteorological Institute (2018). https://en.ilmatieteenlaitos.fi/open-data

  12. FTA: (2018) Data and Publications. Technical report, Finnish Transport Agency. https://vayla.fi/web/en/data. (open data on Finnish transport)

  13. Goves, C., North, R., Johnston, R., Fletcher, G.: Short term traffic prediction on the UK Motorway network using neural networks. Transp. Res. Procedia 13, 184–195 (2016). https://doi.org/10.1016/j.trpro.2016.05.019

    Article  Google Scholar 

  14. Guo, J., Williams, B.M.: Real-Time short-term traffic speed level forecasting and uncertainty quantification using Layered Kalman filters. Transp. Res. Rec.: J. Transp. Res. Board 2175(1), 28–37 (2010). https://doi.org/10.3141/2175-04

    Article  Google Scholar 

  15. Guo, S., Wu, R., Tong, Q., Zeng, G., Yang, J., Chen, L., Zhu, T., Lv, W., Li, D.: Is city traffic damaged by torrential rain? Physica A: Stat. Mech. Appl. 503(August), 1073–1080 (2018). https://doi.org/10.1016/j.physa.2018.08.044

  16. Lu, W., Rui, Y., Ran, B.: Lane-level traffic speed forecasting: A novel mixed deep learning model. IEEE Trans. Intell. Transp. Syst. 1–12 (2020). https://doi.org/10.1109/TITS.2020.3038457

  17. Mankinen, T.: Predicting Short-Term Traffic Speed: A Model Assessment Using Spatiotemporal Variables. Master’s thesis, LUT University (2019)

    Google Scholar 

  18. Mei, H., Ma, A., Poslad, S., Oshin, T.O.: Short-term traffic volume prediction for sustainable transportation in an urban area. J. Comput. Civil Eng. 29(2), 04014,036 (2015)

    Google Scholar 

  19. Meng, X., Fu, H., Peng, L., Liu, G., Yu, Y., Wang, Z., Chen, E.: D-lstm: Short-term road traffic speed prediction model based on GPS positioning data. IEEE Trans. Intell. Transp. Syst. 1–10 (2020). https://doi.org/10.1109/TITS.2020.3030546

  20. Min, W., Wynter, L.: Real-time road traffic prediction with spatio-temporal correlations. Transp. Res. Part C: Emerging Technol. 19(4), 606–616 (2011). https://doi.org/10.1016/j.trc.2010.10.002

    Article  Google Scholar 

  21. Monahan, T.: “War Rooms’’ of the street: surveillance practices in transportation control centers. Commun. Rev. 10(4), 367–389 (2007). https://doi.org/10.1080/10714420701715456

    Article  Google Scholar 

  22. Park, H., Haghani, A., Samuel, S., Knodler, M.A.: Real-time prediction and avoidance of secondary crashes under unexpected traffic congestion. Accid. Anal. Preven. 112, 39–49 (2018). https://doi.org/10.1016/j.aap.2017.11.025

    Article  Google Scholar 

  23. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1023/A:1022643204877

    Article  Google Scholar 

  24. Rokach, L., Maimon, O.: Data Mining With Decision Trees: Theory and Applications, vol. 1, 2nd edn. World Scientific (2015). 10.1017/CBO9781107415324.004, arXiv:1011.1669v3

  25. Ryder, B., Gahr, B., Egolf, P., Dahlinger, A., Wortmann, F.: Preventing traffic accidents with in-vehicle decision support systems—the impact of accident hotspot warnings on driver behaviour. Dec. Sup. Syst. 99, 64–74 (2017). https://doi.org/10.1016/j.dss.2017.05.004

    Article  Google Scholar 

  26. Sathiaraj, D., Punkasem, T., Wang, F., Seedah, D.P.K.: Data-driven analysis on the effects of extreme weather elements on traffic volume in Atlanta, GA, USA. Comput. Environ. Urban Syst. 72(June), 212–220 (2018). https://doi.org/10.1016/j.compenvurbsys.2018.06.012

  27. Steg, G.R.L.: Sustainable transportation and quality of life. J. Transp. Geograp. 13(1), 59–69 (2005)

    Article  Google Scholar 

  28. Sun, S., Huang, R., Gao, Y.: Network-Scale traffic modeling and forecasting with graphical Lasso and neural networks. J. Transp. Eng. 138(11), 1358–1367 (2012). https://doi.org/10.1061/(asce)te.1943-5436.0000435

    Article  Google Scholar 

  29. Thorndike, R.L.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953). https://doi.org/10.1007/BF02289263

    Article  Google Scholar 

  30. TMR: Global intelligent transportation system market to attain us 54.44 bn by 2024 end, opportunities to be fueled by considerable governmental support. Tech. rep., Transparency Market Research (2019). https://www.transparencymarketresearch.com/pressrelease/intelligent-transportation-system-market.html

  31. Vlahogianni, E.I., Karlaftis, M.G., Golias, J.C.: Short-term traffic forecasting: where we are and where we’re going. Transp. Res. Part C: Emerging Technol. 43, 3–19 (2014). https://doi.org/10.1016/j.trc.2014.01.005

    Article  Google Scholar 

  32. Wang, J., Shi, Q.: Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet Analysis-Support Vector Machine theory. Transp. Res. Part C: Emerging Technol. 27, 219–232 (2013). https://doi.org/10.1016/j.trc.2012.08.004

    Article  Google Scholar 

  33. Yildirim, Ü., Çataltepe, Z.: Short time traffic speed prediction using data from a number of different sensor locations. In: 2008 IEEE 23rd International Symposium on Computer and Information Sciences, ISCIS 2008, pp 1–6 (2008). https://doi.org/10.1109/ISCIS.2008.4717955

  34. Yu, D., Liu, C., Wu, Y., Liao, S., Anwar, T., Li, W., Zhou, C.: Forecasting short-term traffic speed based on multiple attributes of adjacent roads. Knowl.-Based Syst. 163(1 January), 472–484 (2019). https://doi.org/10.1016/j.knosys.2018.09.003

  35. Yu, J.J.Q., Markos, C., Zhang, S.: Long-term urban traffic speed prediction with deep learning on graphs. IEEE Trans. Intell. Transp. Syst. 1–12 (2021). https://doi.org/10.1109/TITS.2021.3069234

  36. Zang, D., Ling, J., Wei, Z., Tang, K., Cheng, J.: Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network. IEEE Trans. Intell. Transp. Syst. 20(10), 3700–3709 (2019). https://doi.org/10.1109/TITS.2018.2878068

    Article  Google Scholar 

  37. Zhang, L., Liu, Q., Yang, W., Wei, N., Dong, D.: An improved K-nearest neighbor model for short-term traffic flow prediction. Procedia—Soc. Behav. Sci. 96(November), 653–662 (2013). https://doi.org/10.1016/j.sbspro.2013.08.076

  38. Zhang, Y., Haghani, A.: A gradient boosting method to improve travel time prediction. Transp. Res. Part C: Emerging Technol. 58(Part: B), 308–324 (2015). https://doi.org/10.1016/j.trc.2015.02.019

Download references

Acknowledgements

This chapter is based on and extends the results and analysis available in the MSc thesis by Teemu Mankinen [17].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teemu Mankinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mankinen, T., Stoklasa, J., Luukka, P. (2022). Predicting Short-Term Traffic Speed and Speed Drops in the Urban Area of a Medium-Sized European City—A Traffic Control and Decision Support Perspective. In: Luukka, P., Stoklasa, J. (eds) Intelligent Systems and Applications in Business and Finance. Studies in Fuzziness and Soft Computing, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-030-93699-0_7

Download citation

Publish with us

Policies and ethics