Skip to main content

Data Governance in a Database Operating System (DBOS)

  • Conference paper
  • First Online:
Heterogeneous Data Management, Polystores, and Analytics for Healthcare (DMAH 2021, Poly 2021)

Abstract

This paper documents the data governance facilities in DBOS, a database-oriented operating system under construction at Stanford and MIT. Because all operating system state is stored in a high performance main-memory relational DBMS, DBOS has architected a novel data provenance system for all application data. This system uses a high-volume column store for historical provenance information, and provenance data can be queried in SQL. Hence, at its core, DBOS is a polystore data system. Complementing this capability are facilities motivated by GDPR including support for personal data, purposes, and the right to be forgotten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mit supercloud (2021). https://supercloud.mit.edu/

  2. Splunk (2021). https://www.splunk.com/

  3. VoltDB (2021). https://www.voltdb.com/

  4. Agrawal, R., Jagadish, H.: Direct algorithms for computing the transitive closure of database relations. In: VLDB, vol. 87, pp. 1–4 (1987)

    Google Scholar 

  5. Alpernas, K., et al.: Secure serverless computing using dynamic information flow control. In: Proceedings of the ACM Programming Languages (OOPSLA), October 2018. https://doi.org/10.1145/3276488,https://doi.org/10.1145/3276488

  6. Chapman, A., Missier, P., Simonelli, G., Torlone, R.: Capturing and querying fine-grained provenance of preprocessing pipelines in data science. Proc. VLDB Endow. 14(4), 507–520 (2020). https://doi.org/10.14778/3436905.3436911

  7. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how, and where. Found. Trends Databases 1(4), 379–474 (2009). https://doi.org/10.1561/1900000006

  8. Chiticariu, L., Tan, W.C., Vijayvargiya, G.: Dbnotes: a post-it system for relational databases based on provenance. In: Conference: Proceedings of the ACM SIGMOD International Conference on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005, pp. 942–944, January 2005. https://doi.org/10.1145/1066157.1066296

  9. Dar, S., Ramakrishnan, R.: A performance study of transitive closure algorithms. ACM SIGMOD Record. 23(2), 454–465 (1994)

    Article  Google Scholar 

  10. Frew, J., Bose, R.: Earth system science workbench: a data management infrastructure for earth science products, pp. 180–189, January 2001. https://doi.org/10.1109/SSDM.2001.938550

  11. Frew, J., Metzger, D., Slaughter, P.: Automatic capture and reconstruction of computational provenance. Concurr. Comput. Pract. Exp. 20, 485–496 (2008). https://doi.org/10.1002/cpe.1247

  12. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2007, pp. 31–40. Association for Computing Machinery, New York (2007). https://doi.org/10.1145/1265530.1265535,https://doi.org/10.1145/1265530.1265535

  13. Gadepally, V., Mattson, T., Stonebraker, M., Wang, F., Luo, G., Laing, Y., Dubovitskaya, A. (eds.): DMAH/Poly -2019. LNCS, vol. 11721. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33752-0

    Book  Google Scholar 

  14. Lin, C., et al.: A reference architecture for scientific workflow management systems and the view SOA solution. IEEE Trans. Serv. Comput. 2, 79–92 (2009). https://doi.org/10.1109/TSC.2009.4

  15. Linux: Linux seccomp. https://man7.org/linux/man-pages/man2/seccomp.2.html

  16. Macke, S., Gong, H., Lee, D.J.L., Head, A., Xin, D., Parameswaran, A.: Fine-grained lineage for safer notebook interactions (2021)

    Google Scholar 

  17. Malviya, N., Weisberg, A., Madden, S., Stonebraker, M.: Rethinking main memory OLTP recovery. In: 2014 IEEE 30th International Conference on Data Engineering, pp. 604–615. IEEE (2014)

    Google Scholar 

  18. McPhillips, T., Song, T., Kolisnik, T., Aulenbach, S., Freire, J.: al et: Yesworkflow: a user-oriented, language-independent tool for recovering workflow information from scripts. Int. J. Digit. Cur. 10(1), 298–313 (2015)

    Article  Google Scholar 

  19. Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.: Provenance-aware storage systems. In: Proceedings of the Annual Conference on USENIX 2006 Annual Technical Conference, ATEC 2006, p. 4. USENIX Association (2006)

    Google Scholar 

  20. Murta, L., Braganholo, V., Chirigati, F., Koop, D., Freire, J.: noworkflow: capturing and analyzing provenance of scripts. In: Ludäscher, B., Plale, B. (eds.) Provenance and Annotation of Data and Processes, pp. 71–83. Springer, Cham (2015)

    Chapter  Google Scholar 

  21. Namaki, M.H., et al.: Vamsa: Automated Provenance Tracking in Data Science Scripts, pp. 1542–1551. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3394486.3403205

  22. Namaki, M.H., Song, Q., Wu, Y., Yang, S.: Answering why-questions by exemplars in attributed graphs. In: Proceedings of the 2019 International Conference on Management of Data, SIGMOD 2019, pp. 1481–1498. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3299869.3319890,https://doi.org/10.1145/3299869.3319890

  23. Psallidas, F., Wu, E.: Smoke: fine-grained lineage at interactive speed. Proc. VLDB Endow. 11(6), 719–732 (2018). https://doi.org/10.14778/3199517.3199522

  24. PyPy: Pypy’s sandboxing features. https://doc.pypy.org/en/release-2.0-beta2/sandbox.html

  25. Rezig, E.K., et al.: Dagger: a data (not code) debugger. In: 10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, 12–15 January 2020, Online Proceedings. www.cidrdb.org (2020). http://cidrdb.org/cidr2020/papers/p35-rezig-cidr20.pdf

  26. Salvatore Sanfilippo: Retwis: a twitter toy-clone (2014). https://github.com/antirez/retwis

  27. Sato, K.: An inside look at google bigquery. White paper (2012). https://cloud.google.com/files/BigQueryTechnicalWP.pdf

  28. Skiadopoulos, A., et al.: DBOS: a DBMS-oriented Operating System. Submitted for publication (2021)

    Google Scholar 

  29. Valduriez, P., Khoshfian, S.: Parallel evaluation of the transitive closure of a database relation. Int. J. Parallel Program. 17(1), 19–42 (1988)

    Article  Google Scholar 

  30. Vuppalapati, M., Miron, J., Agarwal, R., Truong, D., Motivala, A., Cruanes, T.: Building an elastic query engine on disaggregated storage. In: 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2020), pp. 449–462. USENIX Association, Santa Clara, February 2020. https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

  31. Wolstencroft, K., et al.: The Taverna workflow suite: designing and executing workflows of Web Services on the desktop, web or in the cloud. Nucl. Acids Res. 41(W1), W557–W561 (2013). https://doi.org/10.1093/nar/gkt328,https://doi.org/10.1093/nar/gkt328

  32. Yang, Y., et al.: Flexpushdowndb: Hybrid pushdown and caching in a cloud DBMS. In: VLDB, vol. 14 (2021)

    Google Scholar 

  33. Zheng, N., Ives, Z.G.: Compact, tamper-resistant archival of fine-grained provenance. Proc. VLDB Endow. 14(4), 485–497 (2020). https://doi.org/10.14778/3436905.3436909

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, D. et al. (2021). Data Governance in a Database Operating System (DBOS). In: Rezig, E.K., et al. Heterogeneous Data Management, Polystores, and Analytics for Healthcare. DMAH Poly 2021 2021. Lecture Notes in Computer Science(), vol 12921. Springer, Cham. https://doi.org/10.1007/978-3-030-93663-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93663-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93662-4

  • Online ISBN: 978-3-030-93663-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics