Skip to main content

Blockchain for Smart Transport Applications

  • Chapter
  • First Online:
Advances in Blockchain Technology for Cyber Physical Systems

Part of the book series: Internet of Things ((ITTCC))

Abstract

Smart transportation or Internet of Vehicles (IoV)-enabled transportation extends the vehicle-to-vehicle (V2V) communication network. Smart transportation is a real-time application that helps enhance driving aids with the help of vehicle’s Artificial Intelligence (AI), awareness of other vehicles, and their actions giving out the best on-road experience. Smart transportation also protects life and saves cost by avoiding life-threatening instances like collisions, accidents, and thefts on the road. Since the communication among various entities involved in the IoV environment is via an open channel (e.g., vehicles, pedestrians, fleet management systems, and roadside infrastructure), it allows a passive/active adversary to intercept, modify, delete, or even insert fake information during communication. It is then a severe concern for the vehicles users to determine whether the received information is genuine. Many security protocols have addressed this issue by adding an authentication mechanism. Authentication schemes face a lot of limitations like central registration authority, privacy issues, long certificate mechanism, fabricated hardware problems, excess storage overheads, and large computation and communication costs. To mitigate these issues, several researchers have proposed blockchain technology-based authentication protocols in smart transportation. This chapter focuses on the security aspects of smart transportation and how blockchain can be used as a security solution for smart transportation systems. We briefly explain blockchain, its types and its advantages. We outline few schemes that provide security solutions for the blockchain-based smart transportation system. A comparative analysis is also provided to study the effectiveness of the schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. Kenney, Dedicated Short-Range Communications (DSRC) standards in the United States. Proc. IEEE 99(7), 1162–1182 (2011)

    Article  Google Scholar 

  2. P. Bagga, A.K. Das, M. Wazid, J.J.P.C. Rodrigues, Y. Park, Authentication protocols in internet of vehicles: taxonomy, analysis, and challenges. IEEE Access 8, 54314–54344 (2020)

    Article  Google Scholar 

  3. J. Shao, X. Lin, R. Lu, C. Zuo, A threshold anonymous authentication protocol for VANETs. IEEE Trans. Veh. Technol. 65(3), 1711–1720 (2016)

    Article  Google Scholar 

  4. Y. Liu, Y. Wang, G. Chang, Efficient privacy-preserving dual authentication and key agreement scheme for secure V2V communications in an IoV paradigm. IEEE Trans. Intell. Transp. Syst. 18(10), 2740–2749 (2017)

    Article  Google Scholar 

  5. H.J. Jo, I.S. Kim, D.H. Lee, Reliable cooperative authentication for vehicular networks. IEEE Trans. Intell. Transp. Syst. 19(4), 1065–1079 (2018)

    Article  Google Scholar 

  6. J. Liu, Q. Li, R. Sun, X. Du, M. Guizani, An efficient anonymous authentication scheme for internet of vehicles, in IEEE International Conference on Communications (ICC), (Kansas City, 2018), pp. 1–6

    Google Scholar 

  7. J. Cui, D. Wu, J. Zhang, Y. Xu, H. Zhong, An efficient authentication scheme based on semi-trusted authority in VANETs. IEEE Trans. Veh. Technol. 68(3), 2972–2986 (2019)

    Article  Google Scholar 

  8. L. Wu, Q. Sun, X. Wang, J. Wang, S. Yu, Y. Zou, B. Liu, Z. Zhu, An efficient privacy- preserving mutual authentication scheme for secure V2V communication in vehicular ad hoc network. IEEE Access 7, 55050–55063 (2019)

    Article  Google Scholar 

  9. H. Vasudev, V. Deshpande, D. Das, S.K. Das, A lightweight mutual authentication protocol for V2V communication in internet of vehicles. IEEE Trans. Veh. Technol. 69(6), 6709–6717 (2020)

    Article  Google Scholar 

  10. Z. Xu, W. Liang, K. Ching Li, J. Xu, H. Jin, A blockchain-based roadside unit-assisted authentication and key agreement protocol for internet of vehicles. J. Parallel Distrib. Comput. 149, 29–39 (2021)

    Article  Google Scholar 

  11. J. Contreras-Castillo, S. Zeadally, J.A. Guerrero-Ibanez, Internet of vehicles: architecture, protocols, and security. IEEE Internet Things J. 5(5), 3701–3709 (2018)

    Article  Google Scholar 

  12. Margaret Rouse, Internet of Vehicles (IoV) (2020). https://whatis.techtarget.com/definition/Internet-of-Vehicles. Accessed on January 2020

  13. Y. Li, Q. Luo, J. Liu, H. Guo, N. Kato, TSP security in intelligent and connected vehicles: challenges and solutions. IEEE Wirel. Commun. 26(3), 125–131 (2019)

    Article  Google Scholar 

  14. J. Liu, H. Guo, J. Xiong, N. Kato, J. Zhang, Y. Zhang, Smart and resilient EV charging in SDN-enhanced vehicular edge computing networks. IEEE J. Sel. Areas Commun. 38(1), 217–228 (2020)

    Article  Google Scholar 

  15. J. Wang, J. Liu, N. Kato, Networking and Communications in Autonomous Driving: a survey. IEEE Commun. Surv. Tutor. 21(2), 1243–1274 (2019)

    Article  Google Scholar 

  16. Y. Xun, J. Liu, N. Kato, Y. Fang, Y. Zhang, Automobile driver fingerprinting: a new machine learning based authentication scheme. IEEE Trans. Industr. Inform. (2019). https://doi.org/10.1109/TII.2019.2946626

  17. J. Wang, C. Li, H. Li, Y. Wang, Key technologies and development status of internet of vehicles, in 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA’17), (Changsha, China, 2017), pp. 29–32

    Google Scholar 

  18. F. Yang, S. Wang, J. Li, Z. Liu, Q. Sun, An overview of internet of vehicles. China Commun. 11(10), 1–15 (2014)

    Article  Google Scholar 

  19. S.S. Panda, B.K. Mohanta, U. Satapathy, D. Jena, D. Gountia, T.K. Patra, Study of Blockchain based decentralized consensus algorithms, in TENCON 2019–2019 IEEE Region 10 Conference (TENCON), (Kochi, India, 2019), pp. 908–913

    Google Scholar 

  20. W. Mougayar, The Business Blockchain: Promise, Practice, and Application of the Next Internet Technology (Wiley, New York, United States, 2016)

    Google Scholar 

  21. S. Basu, U. Maulik, O. Chatterjee, Stability of consensus node orderings under imperfect network data. IEEE Trans. Computat. Soc. Syst. 3(3), 120–131 (2016)

    Article  Google Scholar 

  22. N. Chaudhry, M.M. Yousaf, Consensus algorithms in Blockchain: comparative analysis, challenges and opportunities, in 2018 12th International Conference on Open Source Systems and Technologies (ICOSST), (Lahore, Pakistan, 2018), pp. 54–63

    Google Scholar 

  23. S. Pahlajani, A. Kshirsagar, V. Pachghare, Survey on private Blockchain consensus algorithms, in 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT), (Chennai, India, 2019), pp. 1–6

    Google Scholar 

  24. G.S. Veronese, M. Correia, A.N. Bessani, L.C. Lung, P. Verissimo, Efficient byzantine fault-tolerance. IEEE Trans. Comput. 62(1), 16–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. L. Lamport, R. Shostak, M. Pease, The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  26. L. Zhang, Q. Li, Research on consensus efficiency based on practical byzantine fault tolerance, in 2018 10th International Conference on Modelling, Identification and Control (ICMIC), (Guiyang, China, 2018), pp. 1–6

    Google Scholar 

  27. G.S. Veronese, M. Correia, A.N. Bessani, L.C. Lung, P. Verissimo, Efficient byzantine fault-tolerance. IEEE Trans. Comput. 62(1), 16–30 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. Zheng, S. Xie, H.N. Dai, X. Chen, H. Wang, Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018)

    Article  Google Scholar 

  29. S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system. Cryptography Mailing list at https://metzdowd.com (2009)

  30. H. Dai, Z. Zheng, Y. Zhang, Blockchain for Internet of Things: a survey. IEEE Internet Things J. 6(5), 8076–8094 (2019)

    Article  Google Scholar 

  31. S. King, S. Nadal, PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake. 12 (2020)

    Google Scholar 

  32. K. Li, H. Li, H. Hou, K. Li, Y. Chen, Proof of vote: a high-performance consensus protocol based on vote mechanism consortium Blockchain, in 2017 IEEE 19th International Conference on High Performance Computing and Communications; IEEE 15th International Conference on Smart City; IEEE 3rd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), (Bangkok, Thailand, 2017), pp. 466–473

    Google Scholar 

  33. P. Bagga, A. Sutrala, A.K. Das, P. Vijayakumar, Blockchain-based batch authentication protocol for internet of vehicles. J. Syst. Archit. 113, 101877 (2020)

    Article  Google Scholar 

  34. A. Vangala, B. Bera, S. Saha, A.K. Das, N. Kumar, Y. Park, Blockchain-enabled certificate- based authentication for vehicle accident detection and notification in intelligent transportation systems. IEEE Sensors J. 21(14), 1–15 (2020)

    Google Scholar 

  35. M. Wazid, A.K. Das, S. Shetty, M. Jo, A tutorial and future research for building a Blockchain-based secure communication scheme for internet of intelligent things. IEEE Access 8, 88700–88716 (2020)

    Article  Google Scholar 

  36. D. Chattaraj, S. Saha, B. Bera, A.K. Das, On the design of Blockchain-based access control scheme for software defined networks, in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), (Toronto, ON, Canada, 2020), pp. 237–242

    Google Scholar 

  37. S. Jangirala, A.K. Das, A.V. Vasilakos, Designing secure lightweight Blockchain- enabled RFID-based authentication protocol for supply chains in 5G Mobile edge computing environment. IEEE Trans. Industr. Inform. 16(11), 7081–7093 (2020)

    Article  Google Scholar 

  38. B. Bera, S. Saha, A.K. Das, N. Kumar, P. Lorenz, M. Alazab, Blockchain-envisioned secure data delivery and collection scheme for 5G-based IoT-enabled internet of drones environment. IEEE Trans. Veh. Technol. 69(8), 9097–9111 (2020)

    Article  Google Scholar 

  39. B. Bera, D. Chattaraj, A.K. Das, Designing secure Blockchain-based access control scheme in IoT-enabled internet of drones deployment. Comput. Commun. 153, 229–249 (2020)

    Article  Google Scholar 

  40. B. Bera, S. Saha, A.K. Das, A.V. Vasilakos, Designing Blockchain-based access control protocol in IoT-enabled smart-grid system. IEEE Internet Things J. 8(7), 5744–5761 (2020)

    Google Scholar 

  41. S. Son, J. Lee, M. Kim, S. Yu, A.K. Das, Y. Park, Design of secure authentication protocol for cloud-assisted telecare medical information system using Blockchain. IEEE Access 8, 192177–192191 (2020)

    Article  Google Scholar 

  42. N. Garg, M. Wazid, A.K. Das, D.P. Singh, J.J.P.C. Rodrigues, Y. Park, BAKMP- IoMT: design of Blockchain enabled authenticated key management protocol for internet of medical things deployment. IEEE Access 8, 95956–95977 (2020)

    Article  Google Scholar 

  43. M. Wazid, B. Bera, A. Mitra, A.K. Das, R. Ali, Private Blockchain-envisioned security framework for AI-enabled IoT-based drone-aided healthcare services, in Proceedings of the 2nd ACM MobiCom Workshop on Drone Assisted Wireless Communications for 5G and beyond (DroneCom’20), (London, 2020), pp. 37–42

    Google Scholar 

  44. S. Saha, A.K. Sutrala, A.K. Das, N. Kumar, J.J.P.C. Rodrigues, On the design of Blockchain-based access control protocol for IoT-enabled healthcare applications, in ICC 2020–2020 IEEE International Conference on Communications (ICC), (Dublin, Ireland, 2020), pp. 1–6

    Google Scholar 

  45. B. Bera, A.K. Das, M. Obaidat, P. Vijayakumar, K.F. Hsiao, Y. Park, AI-enabled Blockchain-based access control for malicious attacks detection and mitigation in IoE. IEEE Consum. Electron. Mag. 10(5), 82–92 (2020)

    Google Scholar 

  46. B. Bera, A.K. Das, A.K. Sutrala, Private Blockchain-based access control mechanism for unauthorized UAV detection and mitigation in internet of drones environment. Comput. Commun. 166, 91–109 (2021)

    Article  Google Scholar 

  47. A. Vangala, A.K. Sutrala, A.K. Das, M. Jo, Smart contract-based Blockchain-envisioned authentication scheme for smart farming. IEEE Internet Things J. 8(13), 10792–10806 (2021)

    Google Scholar 

  48. A. Vangala, A.K. Das, N. Kumar, M. Alazab, Smart secure sensing for IoT-based agriculture: Blockchain perspective. IEEE Sensors J. 21(16), 17591–17607 (2020)

    Google Scholar 

  49. S. Banerjee, B. Bera, A.K. Das, S. Chattopadhyay, M.K. Khan, J.J.P.C. Rodrigues, Private blockchain-envisioned multi-authority CP-ABE-based user access control scheme in IIoT. Comput. Commun. 169, 99–113 (2021)

    Article  Google Scholar 

  50. S. Saha, D. Chattaraj, B. Bera, A.K. Das, Consortium blockchain-enabled access control mechanism in edge computing based generic Internet of Things environment. Trans. Emerg. Telecommun. Technol. 32(6), e3995 (2021)

    Google Scholar 

  51. M. Wazid, A.K. Das, S. Shetty, J.J.P.C. Rodrigues, On the design of secure communication framework for Blockchain-based internet of intelligent battlefield things environment, in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (IN- FOCOM WKSHPS), (Toronto, ON, Canada, 2020), pp. 888–893

    Google Scholar 

  52. F. Qu, Z. Wu, F. Wang, W. Cho, A security and privacy review of VANETs. IEEE Trans. Intell. Transp. Syst. 16(6), 2985–2996 (2015)

    Article  Google Scholar 

  53. M.A. Talib, S. Abbas, Q. Nasir, M.F. Mowakeh, Systematic literature review on internet- of-vehicles communication security. Int. J. Distrib. Sens. Netw. 14(12), 1–21 (2018)

    Google Scholar 

  54. Y. Sun, L. Wu, S. Wu, S. Li, T. Zhang, L. Zhang, J. Xu, Y. Xiong, Security and privacy in the internet of vehicles, in International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI’15), (Beijing, China, 2015), pp. 116–121

    Google Scholar 

  55. M.A. Shahid, A. Jaekel, C. Ezeife, Q. Al-Ajmi, I. Saini, Review of potential security attacks in VANET, in Majan International Conference (MIC’18), (Muscat, Oman, 2018), pp. 1–4

    Google Scholar 

  56. N. Sharma, N. Chauhan, N. Chand, Security challenges in Internet of Vehicles (IoV) environment, in First International Conference on Secure Cyber Computing and Communication (ICSCCC’18), (Jalandhar, India, 2018), pp. 203–207

    Google Scholar 

  57. A. Dua, N. Kumar, A.K. Das, W. Susilo, Secure message communication protocol among vehicles in Smart City. IEEE Trans. Veh. Technol. 67(5), 4359–4373 (2018)

    Article  Google Scholar 

  58. A. Samad, S. Alam, M. Shuaib, M. Bokhari, Internet of Vehicles (IoV) Requirements, Attacks and Countermeasures (New Delhi, India, 2018)

    Google Scholar 

  59. O.Y. Al-Jarrah, C. Maple, M. Dianati, D. Oxtoby, A. Mouzakitis, Intrusion detection systems for intra-vehicle networks: a review. IEEE Access 7, 21266–21289 (2019)

    Article  Google Scholar 

  60. M. Wazid, A.K. Das, K. Vivekananda Bhat, A.V. Vasilakos, LAM-CIoT: lightweight authentication mechanism in cloud-based IoT environment. J. Netw. Comput. Appl. 150, 102496 (2020)

    Article  Google Scholar 

  61. M. Wazid, A.K. Das, N. Kumar, A.V. Vasilakos, J.J.P.C. Rodrigues, Design and analysis of secure lightweight remote user authentication and key agreement scheme in internet of drones deployment. IEEE Internet Things J. 6(2), 3572–3584 (2019)

    Article  Google Scholar 

  62. Q. Jiang, S. Zeadally, J. Ma, D. He, Lightweight three-factor authentication and key agreement protocol for internet-integrated wireless sensor networks. IEEE Access 5, 3376–3392 (2017)

    Article  Google Scholar 

  63. V. Odelu, A.K. Das, A. Goswami, SEAP: Secure and efficient authentication protocol for NFC applications using pseudonyms. IEEE Trans. Consum. Electron. 62(1), 30–38 (2016)

    Article  Google Scholar 

  64. S. Chatterjee, A.K. Das, J. Sing, An enhanced access control scheme in wireless sensor networks. Ad-Hoc Sens. Wirel. Netw. 21, 121–149 (2014)

    Google Scholar 

  65. D. Mishra, A.K. Das, S. Mukhopadhyay, A secure and efficient ECC-based user anonymity- preserving session initiation authentication protocol using smart card. Peer Peer Netw. Appl. 9(1), 171–192 (2016)

    Article  Google Scholar 

  66. S. Challa, A.K. Das, P. Gope, N. Kumar, F. Wu, A.V. Vasilakos, Design and analysis of authenticated key agreement scheme in cloud-assisted cyber–physical systems. Futur. Gener. Comput. Syst. 108, 1267–1286 (2020)

    Article  Google Scholar 

  67. A.K. Das, A. Sutrala, S. Kumari, V. Odelu, M. Wazid, X. Li, An efficient multi-gateway- based three-factor user authentication and key agreement scheme in hierarchical wireless sensor networks. Secur. Commun. Netw. 9(13), 2070–2092 (2016)

    Article  Google Scholar 

  68. C. Lin, D. He, N. Kumar, K.R. Choo, A. Vinel, X. Huang, Security and privacy for the internet of drones: challenges and solutions. IEEE Commun. Mag. 56(1), 64–69 (2018)

    Article  Google Scholar 

  69. M. Wazid, A.K. Das, M.K. Khan, A.A. Al-Ghaiheb, N. Kumar, A.V. Vasilakos, Secure authentication scheme for medicine anti-counterfeiting system in IoT environment. IEEE Internet Things J. 4(5), 1634–1646 (2017)

    Article  Google Scholar 

  70. M. Wazid, P. Bagga, A.K. Das, S. Shetty, J.J.P.C. Rodrigues, Y. Park, AKM-IoV: authenticated key management protocol in fog computing-based internet of vehicles deployment. IEEE Internet Things J. 6(5), 8804–8817 (2019)

    Article  Google Scholar 

  71. C.-T. Li, C.-C. Lee, C.-Y. Weng, Security and efficiency enhancement of robust ID based mutual authentication and key agreement scheme preserving user anonymity in mobile networks. J. Inf. Sci. Eng. 34(1), 155–170 (2018)

    Google Scholar 

  72. J. Srinivas, A.K. Das, N. Kumar, J.J.P.C. Rodrigues, TCALAS: temporal credential- based anonymous lightweight authentication scheme for internet of drones environment. IEEE Trans. Veh. Technol. 68(7), 6903–6916 (2019)

    Article  Google Scholar 

  73. Q. Jiang, N. Zhang, J. Ni, J. Ma, X. Ma, K.K.R. Choo, Unified biometric privacy preserving three-factor authentication and key agreement for cloud-assisted autonomous vehicles. IEEE Trans. Veh. Technol. 69(9), 9390–9401 (2020)

    Article  Google Scholar 

  74. M. Wazid, A.K. Das, J.H. Lee, Authentication protocols for the internet of drones: taxonomy, analysis and future directions. J. Ambient. Intell. Humaniz. Comput. (2018). https://doi.org/10.1007/s12652-018-1006-x

  75. C.T. Li, C. Chen, C. Lee, C. Weng, C. Chen, A novel three-party password-based authenticated key exchange protocol with user anonymity based on chaotic maps. Soft. Comput. 22(8), 2495–2506 (2018)

    Article  MATH  Google Scholar 

  76. Y. Zhang, D. He, L. Li, B. Chen, A lightweight authentication and key agreement scheme for internet of drones. Comput. Commun. 154, 455–464 (2020)

    Article  Google Scholar 

  77. H. Tan, I. Chung, Secure authentication and key management with Blockchain in VANETs. IEEE Access 8, 2482–2498 (2020)

    Article  Google Scholar 

  78. D. Zheng, C. Jing, R. Guo, S. Gao, L. Wang, A traceable Blockchain-based access authentication system with privacy preservation in VANETs. IEEE Access 7, 117716–117726 (2019)

    Article  Google Scholar 

  79. C. Lin, D. He, X. Huang, N. Kumar, K.-K.R. Choo, BCPPA: a Blockchain-based conditional privacy-preserving authentication protocol for vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst., 1–13 (2020)

    Google Scholar 

  80. C. Lee, C. Chen, P. Wu, T. Chen, Three-factor control protocol based on elliptic curve cryptosystem for universal serial bus mass storage devices. IET Comput. Digit. Tech. 7(48–56), 1 (2013)

    Google Scholar 

  81. S. Challa, M. Wazid, A.K. Das, N. Kumar, A. Reddy, E.J. Yoon, Y. Kee-Young, Secure signature-based authenticated key establishment scheme for future IoT applications. IEEE Access 5, 3028–3043 (2017)

    Article  Google Scholar 

  82. D. He, S. Zeadally, B. Xu, X. Huang, An efficient identity-based conditional privacy- preserving authentication scheme for vehicular ad hoc networks. IEEE Trans. Inf. Forensics Secur. 10, 2681–2691 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagga, P., Das, A.K. (2022). Blockchain for Smart Transport Applications. In: Maleh, Y., Tawalbeh, L., Motahhir, S., Hafid, A.S. (eds) Advances in Blockchain Technology for Cyber Physical Systems. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-93646-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93646-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93645-7

  • Online ISBN: 978-3-030-93646-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics