Skip to main content

Modeling Infinite Games on Finite Graphs Using Numerical Infinities

  • Chapter
  • First Online:
Numerical Infinities and Infinitesimals in Optimization

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 43))

  • 287 Accesses

Abstract

In his seminal work, Robert McNaughton (see [14] and [10]) developed a model of infinite games played on finite graphs. Here is presented a new model of infinite games played on finite graphs using the Grossone paradigm. The new Grossone model provides certain advantages such as allowing for draws, which are common in board games, and a more accurate and decisive method for determining the winner.

This chapter is dedicated in loving memory to my wife Zana, who has and will always be my motivation and my inspiration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [19], Sergeyev formally presents the divisibility axiom as saying for any finite natural number n sets \(\mathbb {N}_{k,n}, \; 1\le k\le n\), being the nth parts of the set \(\mathbb {N}\), have the same number of elements indicated by the numeral \(\frac{\textcircled {1}}{n}\) where

    $$\begin{aligned} \mathbb {N}_{k,n}=\{k,k+n,k+2n,k+3n,...\}, \; 1\le k \le n,\; \bigcup ^n_{k=1}\mathbb {N}_{k,n}=\mathbb {N} \end{aligned}$$

    and illustrates this with examples of the odd and even natural numbers.

  2. 2.

    Here we use the notion of complete taken from [19], that is the sequence contains \(\textcircled {1}\) elements.

  3. 3.

    It is noted here that, as is usual, the \(\subset \) symbol can also imply equality.

References

  1. Cantor, G.: Contributions to the Founding of the Theory of Transfinite Numbers. Dover Publications, New York (1955)

    MATH  Google Scholar 

  2. Caldarola, F.: The exact measures of the Sierpiński d-dimensional tetrahedron in connection with a Diophantine nonlinear system. Commun. Nonlinear Sci. Numer. Simul. 63, 228–238 (2018)

    Article  MathSciNet  Google Scholar 

  3. Cococcioni, M., Fiaschi, L., Lambertini, L. Non-Archimedean zero-sum games. J. Comput. Appl. Math. 393, article 113483 (2021)

    Google Scholar 

  4. Cococcioni, M., Fiaschi, L. Non-Archimedean game theory: a numerical approach. Appl. Math. Comput. 409, article 125356 (2021)

    Google Scholar 

  5. De Leone, R., Fasano, G., Sergeyev, Y.D.: Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming. Comput. Optim. Appl. 71(1), 73–93 (2018)

    Article  MathSciNet  Google Scholar 

  6. De Leone, R.: Nonlinear programming and grossone: quadratic programming and the role of constraint qualifications. Appl. Math. Comput. 318, 290–297 (2018)

    MATH  Google Scholar 

  7. D’Alotto, L.: A classification of one-dimensional cellular automata using infinite computations. Appl. Math. Comput. 255, 15–24 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Fiaschi, L., Cococcioni, M.: Numerical asymptotic results in game theory using Sergeyev’s infinity computing. Int. J. Unconv. Comput. 14(1), 1–25 (2018)

    Google Scholar 

  9. Gordon, P.: Numerical cognition without words: evidence from Amazonia. Science 306, 496–499 (2004)

    Article  Google Scholar 

  10. Khoussainov, B., Nerode, A., Automata Theory and its Applications. Birkhauser, (2001)

    Google Scholar 

  11. Iudin, D.I., Sergeyev, Y.D., Hayakawa, M.: Infinity computations in cellular automaton forest-fire model. Commun. Nonlinear Sci. Numer. Simul. 20(3), 861–870 (2015)

    Article  Google Scholar 

  12. Lolli, G.: Infinitesimals and infinites in the history of mathematics: a brief survey. Appl. Math. Comput. 218(16), 7979–7988 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Lolli, G.: Metamathematical investigations on the theory of Grossone. Appl. Math. Comput. 255, 3–14 (2015)

    MathSciNet  MATH  Google Scholar 

  14. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic 65, 149–184 (1993)

    Article  MathSciNet  Google Scholar 

  15. Margenstern, M.: Using Grossone to count the number of elements of infinite sets and the connection with bijections, p-Adic Numbers. Ultrametr. Anal. Appl. 3(3), 196–204 (2011)

    Article  Google Scholar 

  16. Montagna, F., Simi, G., Sorbi, A.: Taking the Pirahã seriously. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 52–69 (2015)

    Article  MathSciNet  Google Scholar 

  17. Rizza, D.: Numerical methods for infinite decision-making processes. Int. J. Unconv. Comput. 14(2), 139–158 (2019)

    Google Scholar 

  18. Rizza, D.: How to make an infinite decision. Bull. Symbol. Logic 24(2), 227 (2018)

    Article  MathSciNet  Google Scholar 

  19. Sergeyev, Y.D.: Arithmetic of Infinity. Edizioni Orizzonti Meridionali, Italy (2003)

    MATH  Google Scholar 

  20. Sergeyev, Y.D.: A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica 19(4), 567–596 (2008)

    Article  MathSciNet  Google Scholar 

  21. Sergeyev, Y.D., Counting systems and the first Hilbert problem. Nonlinear Anal. Ser. A: Theory, Methods Appl. 72(3–4), 1701–1708 (2010)

    Google Scholar 

  22. Sergeyev, Y.D.: Numerical computations and mathematical modeling with infinite and infinitesimal numbers. J. Appl. Math. Comput. 29, 177–195 (2009)

    Article  MathSciNet  Google Scholar 

  23. Sergeyev, Y.D. Computations with grossone-based infinities. In: Calude, C.S., Dinneen, M.J. (eds.), Proceedings of the 14th International Conference “Unconventional Computation and Natural Computation”, Lecture Notes in Computer Science, vol. 9252, pp. 89–106. Springer (2015)

    Google Scholar 

  24. Sergeyev, Y.D.: The Olympic medals ranks, lexicographic ordering and numerical infinities. Math. Intell. 37(2), 4–8 (2015)

    Article  MathSciNet  Google Scholar 

  25. Sergeyev, Y.D.: Numerical infinities and infinitesimals: methodology, applications, and repercussions on two Hilbert problems. EMS Surv. Math. Sci. 4(2), 219–320 (2017)

    Article  MathSciNet  Google Scholar 

  26. Sergeyev, Y.D., Garro, A.: Observability of turing machines: a refinement of the theory of computation. Informatica 21(3), 425–454 (2010)

    Article  MathSciNet  Google Scholar 

  27. Sergeyev, Y.D.: Independence of the grossone-based infinity methodology from non-standard analysis and comments upon logical fallacies in some texts asserting the opposite. Found. Sci. 24, 153–170 (2019)

    Article  Google Scholar 

  28. Tohmé, F., Caterina, G., Gangle, R.: Computing truth values in the topos of infinite Peirce’s \(\alpha \)-existential graphs. Appl. Math. Comput. 385, article 125343 (2020)

    Google Scholar 

  29. Zhigljavsky, A.: Computing sums of conditionally convergent and divergent series using the concept of grossone. Appl. Math. Comput. 218, 8064–8076 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis D’Alotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

D’Alotto, L. (2022). Modeling Infinite Games on Finite Graphs Using Numerical Infinities. In: Sergeyev, Y.D., De Leone, R. (eds) Numerical Infinities and Infinitesimals in Optimization. Emergence, Complexity and Computation, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-93642-6_12

Download citation

Publish with us

Policies and ethics