Skip to main content

Ungulate Populations in the Tarangire Ecosystem

  • Chapter
  • First Online:
Tarangire: Human-Wildlife Coexistence in a Fragmented Ecosystem

Abstract

Savanna ecosystems support the highest diversities of hoofed mammal (ungulate) species in the world. Ungulates provide critical ecosystem services such as nutrient cycling and redistribution and play a key role in the food web, yet many species of ungulates are in decline due to anthropogenic activities. The fragmented Tarangire Ecosystem supports at least 25 wild ungulate species, yet few studies have been conducted on population status and habitat use in this region compared to the better-known Serengeti Ecosystem. In this chapter we review and discuss historical and current research on population trends of eight commonly detected species of ungulates in the Tarangire Ecosystem, and provide recommendations for long-term conservation of these culturally, economically, and ecologically important taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Elephant, hippopotamus, black rhinoceros, common warthog, bushpig, plains zebra, giraffe, Kirk’s dik-dik, steenbok, klipspringer, bush duiker, Thomson’s gazelle, Grant’s gazelle, gerenuk, Bohor reedbuck, common waterbuck, fringe-eared oryx, eastern white-bearded wildebeest, Coke’s hartebeest, impala, lesser kudu, greater kudu, common eland, bushbuck, African buffalo.

References

  • African Wildlife Foundation (AWF) (2005) Tarangire Manyara Ecosystem Management Regime Progress Report 1998–2005. African Wildlife Foundation, Arusha, Tanzania

    Google Scholar 

  • Anderson TM, White S, Davis B, Erhardt R, Palmer M, Swanson A, Kosmala M, Packer C (2016) The spatial distribution of African savannah herbivores: species associations and habitat occupancy in a landscape context. Philos Trans R Soc B 371:20150314

    Article  Google Scholar 

  • Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J Wildl Manag 62:1165–1183

    Article  Google Scholar 

  • Bencin H, Kioko J, Kiffner C (2016) Local people’s perception of wildlife species in two distinct landscapes of Northern Tanzania. J Nat Conserv 34:82–92

    Article  Google Scholar 

  • Bond ML, Bradley CM, Kiffner C, Morrison TA, Lee DE (2017) A multi-method approach to delineate and validate migratory corridors. Landsc Ecol 32:1705–1721

    Article  Google Scholar 

  • Borner M (1981) Black rhino disaster in Tanzania. Oryx 16:59–66

    Article  Google Scholar 

  • Brehony P, Bluwstein J, Lund JF, Tyrell P (2018) Bringing back complex socio-ecological realities to the study of CBNRM impacts: response to Lee and Bond (2018). J Mammal 99:1539–1542

    Article  Google Scholar 

  • Clauss M (2013) Digestive physiology and feeding behaviour of equids—a comparative approach. In: Horse health nutrition—European equine health nutrition congress, gent, Belgium, March 2013, pp 25–33

    Google Scholar 

  • Diplock N, Johnston K, Mellon A, Mitchell L, Moore M, Schneider D, Taylor A, Whitney J, Zegra K, Kioko J, Kiffner C (2018) Large mammal declines and the incipient loss of mammal-bird mutualisms in an African savanna ecosystem. PLoS One 13(8):e0202536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupont LM (2011) Orbital scale vegetation change in Africa. Quat Sci Rev 30:3589–3602

    Article  Google Scholar 

  • Estes RD (1992) The behavior guide to African mammals: including hoofed mammals, carnivores, primates. University of California Press, Berkeley

    Google Scholar 

  • Estes RD (2014) The gnu’s world: Serengeti wildebeest ecology and life history. University of California Press, Berkeley

    Book  Google Scholar 

  • Estes RD, East R (2009) Status of the wildebeest (Connochaetes taurinus) in the wild 1967–2005, Working Paper No. 37. Wildlife Conservation Society

    Google Scholar 

  • Fernández MH, Vrba ES (1999) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80:269–302

    Google Scholar 

  • Foley CAH, Faust LJ (2010) Rapid population growth in an elephant Loxodonta africana population recovering from poaching in Tarangire National Park, Tanzania. Oryx 44:205–212

    Article  Google Scholar 

  • Foley C, Strindberg S, Hassanali M, Baran P, Foley L, Lobora A (2018) Abundance and distribution of large ungulates in the Tarangire-West Kilimanjaro Ecosystem: an analysis of five ground counts from 2016–2018. Unpublished report

    Google Scholar 

  • Fryxell JM, Greever J, Sinclair ARE (1988) Why are migratory ungulates so abundant? Am Nat 131:781–798

    Article  Google Scholar 

  • Gentry A (1978) Bovidae. In: Maglio V, Cooke H (eds) Evolution of African mammals. Harvard University Press, Cambridge, pp 540–572

    Chapter  Google Scholar 

  • Gereta E, Ole Meing’ataki GE, Mduma S, Wolanski E (2004) The role of wetlands in wildlife migration in the Tarangire ecosystem, Tanzania. Wetl Ecol Manag 12:285–299

    Article  Google Scholar 

  • Gingerich PD (2006) Environment and evolution through the Paleocene–Eocene thermal maximum. Trends Ecol Evol 21:246–253

    Article  PubMed  Google Scholar 

  • Greene K, Bell D, Kioko J, Kiffner C (2017) Performance of ground-based and aerial survey methods for monitoring wildlife assemblages in a conservation area of northern Tanzania. Eur J Wildl Res 63:77–90

    Article  Google Scholar 

  • Greenway PJ, Vesey-Fitzgerald DF (1969) The vegetation of Lake Manyara National Park. J Ecol 57:127–149

    Article  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Evol Syst 8:157–178

    Article  Google Scholar 

  • Hobbs NT (1996) Modification of ecosystems by ungulates. J Wildl Manag 60:695–713

    Article  Google Scholar 

  • Honey M (2008) Ecotourism and sustainable development: who owns paradise? 2nd edn. Island Press, Washington, DC

    Google Scholar 

  • Hopcraft JGC, Holdo RM, Mwangomo E, Mduma SA, Thirgood SJ, Borner M, Fryxell JM, Olff H, Sinclair AR (2015) 6. Why are wildebeest the most abundant herbivore in the Serengeti Ecosystem? In: Serengeti IV: sustaining biodiversity in a coupled human-natural system. University of Chicago Press, pp 125–174

    Chapter  Google Scholar 

  • James N (2019) Resource selection in a suite of savanna ungulates. MSc thesis, University of Zurich

    Google Scholar 

  • Kahurananga JNM (1976) The ecology of large herbivores in Simanjiro plains, Northern Tanzania. PhD dissertation, University of Nairobi

    Google Scholar 

  • Kahurananga J, Silkiluwasha F (1997) The migration of zebra and wildebeest between Tarangire National Park and Simanjiro Plains, northern Tanzania, in 1972 and recent trends. Afr J Ecol 35:179–185

    Article  Google Scholar 

  • Kiffner C, Lee DE (2019) Population dynamics of browsing and grazing ungulates in the Anthropocene. In: Gordon I, Prins H (eds) The ecology of browsing and grazing II. Ecological studies (analysis and synthesis), vol 239. Springer, Cham, pp 155–179

    Google Scholar 

  • Kiffner C, Rheault H, Miller E, Scheetz T, Enriquez V, Swafford R, Kioko J, Prins HHT (2017) Long-term population dynamics in a multi-species assemblage of large herbivores in East Africa. Ecosphere 8(12): e02027

    Google Scholar 

  • Kiffner C, Peters L, Stroming A, Kioko J (2015) Bushmeat consumption in the Tarangire-Manyara Ecosystem. Trop Conserv Sci 8:318–332

    Article  Google Scholar 

  • Kiffner C, Thomas S, Speaker T, O’Connor V, Schwarz P, Kioko J, Kissui B (2020a) Community-based wildlife management area supports similar mammal species richness and densities compared to a national park. Ecol Evol 10:480–492

    Article  PubMed  Google Scholar 

  • Kiffner C, Kioko J, Baylis J, Beckwith C, Brunner C, Burns C, Chavez-Molina V, Cotton S, Glazik L, Loftis E, Moran M, O’Neill C, Theisinger O, Kissui B (2020b) Long-term persistence of wildlife populations in a pastoral area. Ecol Evol 10:10000–10016

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimuyu DM, Sensenig RL, Riginos C, Veblen KE, Young TP (2014) Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna. Ecol Appl 24:741–749

    Article  PubMed  Google Scholar 

  • Kioko J, Boyd E, Schaeffer E, Tareen S, Kiffner C (2016) Cattle egret Bubulcus ibis interactions with large mammals in the Tarangire-Manyara ecosystem, northern Tanzania. Scopus 36:15–20

    Google Scholar 

  • Lamprey HF (1963) The Tarangire game reserve. Tanganyika Notes Rec 60:10–22

    Google Scholar 

  • Lamprey HF (1964) Estimation of the large mammal densities, biomass, and energy exchange in the Tarangire Game Reserve and the Masai Steppe in Tanganyika. East Afr Wildl J 2:1–46

    Article  Google Scholar 

  • Lankester F, Lugelo A, Kazwala R, Keyyu J, Cleaveland S, Yoder J (2015) The economic impact of Malignant Catarrhal Fever on pastoralist livelihoods. PLoS One 10(1):e0116059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leakey MG, Harris JA (eds) (2003) Lothagam: the dawn of humanity in Eastern Africa. Columbia University Press, New York

    Google Scholar 

  • Lee DE (2018) Evaluating conservation effectiveness in a Tanzanian community Wildlife Management Area. J Wildl Manag 82:1767–1774

    Article  Google Scholar 

  • Lee DE, Bond ML (2018a) Quantifying the ecological success of a community-based wildlife conservation area in Tanzania. J Mammal 99:459–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee DE, Bond ML (2018b) Reply to Brehony et al. J Mammal 99:1543–1545

    Article  Google Scholar 

  • Lee DE, Bradley C, Bond ML (2013) Seasonal ungulate distribution and densities on Manyara Ranch 2012–13. Unpublished report

    Google Scholar 

  • Lee DE, Bond ML (2016) Precision, accuracy, and costs of survey methods for giraffe Giraffa camelopardalis. J Mammal 97(3):940–948. https://doi.org/10.1093/jmammal/gyw025

  • Likens G, Lindenmayer D (2010) Effective ecological monitoring. Taylor & Francis, New York

    Google Scholar 

  • Lorenzen ED, Heller R, Siegismund HR (2012) Comparative phylogeography of African savannah ungulates. Mol Ecol 21:3656–3670

    Article  CAS  PubMed  Google Scholar 

  • Loth PE, Prins HHT (1986) Spatial patterns of the landscape and vegetation of Lake Manyara National Park. ITC J 2:115–130

    Google Scholar 

  • Mayaux P, Bartholome E, Fritz S, Belward A (2004) A new land-cover map of Africa for the year 2000. J Biogeogr 31:861–877

    Article  Google Scholar 

  • McNaughton SJ (1983) Serengeti grassland ecology: the role of composite environmental factors and contingency in community organization. Ecol Monogr 53:291–320

    Article  Google Scholar 

  • Mithöfer A, Boland W (2012) Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol 63:431–450

    Article  PubMed  CAS  Google Scholar 

  • Morrison TA, Link WA, Newmark WD, Foley CAH, Bolger DT (2016) Tarangire revisited: consequences of declining connectivity in a tropical ungulate population. Biol Conserv 197:53–60

    Article  Google Scholar 

  • Msoffe FU, Ogutu JO, Kaaya J, Bedelian C, Said MY, Kifugo SC, Reid RS, Neselle M, van Gardingen P, Thirgood S (2010) Participatory wildlife surveys in communal lands: a case study from Simanjiro, Tanzania. Afr J Ecol 48:727–735

    Google Scholar 

  • Mtui D, Owen-Smith N, Lepczyk C (2016) Assessment of wildlife populations trends in three protected areas in Tanzania from 1991 to 2012. Afr J Ecol 55:305–315

    Article  Google Scholar 

  • Nelson F (2010) Community rights, conservation and contested land: the politics of natural resource governance in Africa. Earthscan, London

    Book  Google Scholar 

  • Nichols JD, Williams BK (2006) Monitoring for conservation. Trends Ecol Evol 21:668–673

    Article  PubMed  Google Scholar 

  • Odadi WO, Karachi MK, Abdulrazak SA, Young TP (2011) African wild ungulates compete with or facilitate cattle depending on season. Science 333:1753–1755

    Article  CAS  PubMed  Google Scholar 

  • Olff H, Ritchie ME (1998) Effects of herbivores on grassland plant diversity. Trends Ecol Evol 13:261–265

    Article  CAS  PubMed  Google Scholar 

  • Olff H, Ritchie ME, Prins HHT (2002) Global environmental controls of diversity in large herbivores. Nature 415:901–904

    Article  CAS  PubMed  Google Scholar 

  • Palmer TM, Stanton ML, Young TP, Goheen JR, Pringle RM, Karban R (2008) Breakdown of an ant-plant mutualism follows the loss of large herbivores from an African savanna. Science 319:192–195

    Article  CAS  PubMed  Google Scholar 

  • Peterson DD (1978) Seasonal distributions and interactions of cattle and wild ungulates in Maasailand, Tanzania. MSc thesis. Virginia Polytechnic Institute and State University

    Google Scholar 

  • Prins HHT (1996) Ecology and behaviour of the African buffalo: social inequality and decision making, vol 1. Springer

    Book  Google Scholar 

  • Prins HHT, Douglas-Hamilton I (1990) Stability in a multi-species assemblage of large herbivores in East Africa. Oecologia 83:392–400

    Article  CAS  PubMed  Google Scholar 

  • Prins HHT, van der Jeugd HP (1993) Herbivore population crashes and woodland structure in East Africa. J Ecol 81:305–314

    Article  Google Scholar 

  • Prins HHT, Weyerhaeuser FJ (1987) Epidemics in populations of wild ruminants: anthrax and impala, rinderpest and buffalo in Lake Manyara National Park, Tanzania. Oikos 49:28–38

    Article  Google Scholar 

  • Prins HHT, van der Jeugd HP, Beekman JH (1994) Elephant decline in Lake Manyara National Park, Tanzania. Afr J Ecol 32:185–191

    Article  Google Scholar 

  • Riginos C, Grace JB (2008) Savanna tree density, herbivores, and the herbaceous community: bottom-up vs. top-down effects. Ecology 89:2228–2238

    Article  PubMed  Google Scholar 

  • Sachedina HT (2008) Wildlife is our oil: conservation, livelihoods, and NGOs in the Tarangire Ecosystem, Tanzania. PhD dissertation, University of Oxford

    Google Scholar 

  • Sinclair ARE (1983) The adaptation of African ungulates and their effects on community functions. In: Bourlière F (ed) Ecosystems of the world, volume 13, Tropical savannas. Elsevier, New York, pp 401–326

    Google Scholar 

  • Staver A, Bond W (2014) Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. J Ecol 102:595–602

    Article  Google Scholar 

  • Strömberg CAE (2011) Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci 39:517–544

    Article  CAS  Google Scholar 

  • Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol 47:5–14

    Article  PubMed  Google Scholar 

  • United Republic of Tanzania (URT) (2010) National strategy for growth and reduction of poverty II. Ministry of Finance and Economic Affairs, Dar es Salaam

    Google Scholar 

  • United Republic of Tanzania (URT) (2012) The wildlife conservation (wildlife management areas) regulation. Ministry of Natural Resources and Tourism, Government Printer, Dar es Salaam, United Republic of Tanzania

    Google Scholar 

  • Voeten MM, van de Vijver CADM, Olff H, van Langevelde F (2010) Possible causes of decreasing migratory ungulate population in an East African savannah after restrictions in their seasonal movements. Afr J Ecol 48:169–179

    Article  Google Scholar 

  • Weisberg PJ, Bugmann H (2003) Forest dynamics and ungulate herbivory: from leaf to landscape. For Ecol Manag 181:1–12

    Article  Google Scholar 

Download references

Acknowledgements

Wild Nature Institute’s ungulate monitoring program was funded by the Columbus Zoo and Aquarium, Rufford Foundation, ERM Foundation, and a Fulbright fellowship to Derek Lee. The School for Field Studies Burunge WMA surveys were supported by African Wildlife Foundation, PAMS Foundation, Chem Chem Association, and International Foundation for Wildlife Management. Thanks to Jason Riggio for creating the map of the TE .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica L. Bond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bond, M.L., Kiffner, C., Lee, D.E. (2022). Ungulate Populations in the Tarangire Ecosystem. In: Kiffner, C., Bond, M.L., Lee, D.E. (eds) Tarangire: Human-Wildlife Coexistence in a Fragmented Ecosystem. Ecological Studies, vol 243. Springer, Cham. https://doi.org/10.1007/978-3-030-93604-4_8

Download citation

Publish with us

Policies and ethics