Teichler, U.: Internationalisation trends in higher education and the changing role of international student mobility. J. Int. Mobil. 5, 177 (2017). https://doi.org/10.3917/jim.005.0179
CrossRef
Google Scholar
Courtois, A.: ‘It doesn’t really matter which university you attend or which subject you study while abroad.’ The massification of student mobility programmes and its implications for equality in higher education. Eur. J. High. Educ. 8, 99–114 (2018). https://doi.org/10.1080/21568235.2017.1373027
CrossRef
Google Scholar
Roy, A., Newman, A., Ellenberger, T., Pyman, A.: Outcomes of international student mobility programs: a systematic review and agenda for future research. Stud. High. Educ. 44, 1630–1644 (2019). https://doi.org/10.1080/03075079.2018.1458222
CrossRef
Google Scholar
Zimmermann, J., Greischel, H., Jonkmann, K.: The development of multicultural effectiveness in international student mobility. High. Educ. (2020). https://doi.org/10.1007/s10734-020-00509-2
Bartha, Z., Gubik, A.S.: Institutional determinants of higher education students’ international mobility within the Erasmus Programme countries. Theory Methodol. Pract. 14, 3–13 (2018). https://doi.org/10.18096/TMP.2018.02.01
CrossRef
Google Scholar
Pagani, R.N., Ramond, B., Da Silva, V.L., Zammar, G., Kovaleski, J.L.: Key factors in university-to-university knowledge and technology transfer on international student mobility. Knowl. Manag. Res. Pract. 18, 405–423 (2020). https://doi.org/10.1080/14778238.2019.1678415
CrossRef
Google Scholar
Bartha, Z., Gubik, A.S., Rethi, G.: Management of innovations in Hungarian HEIs: enhancing the Erasmus mobility Programme. Mark. Manag. Innov. 84–95 (2019). https://doi.org/10.21272/mmi.2019.1-07
European Ministers in charge of Higher Education. The Bologna Declaration of 19 June 1999: Joint Declaration of the European Ministers of Education (1999).
Google Scholar
Council of the EU. Erasmus + 2021 2027: Council Reaches a Provisional Agreement with the European Parliament. In: Council of the European Union. https://www.consilium.europa.eu/en/press/press-releases/2020/12/11/erasmus-2021-2027-council-reaches-a-provisional-agreement-with-the-european-parliament/ (2020). Accessed 22 Mar 2021
Chopra, A., Prashar, A., Sain, C.: Natural language processing. Int. J. Technol. Enhanc. Emerg. Eng. Res. 1, 131–134 (2013)
Google Scholar
Jain, A., Kulkarni, G., Shah, V.: Natural language processing. Int. J. Comput. Sci. Eng. 6, 161–167 (2018). https://doi.org/10.26438/ijcse/v6i1.161167
CrossRef
Google Scholar
Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge, UK (2008)
CrossRef
Google Scholar
Luhn, H.P.: A statistical approach to mechanized encoding and searching of literary information. IBM J. Res. Dev. 1, 309–317 (1957). https://doi.org/10.1147/rd.14.0309
MathSciNet
CrossRef
Google Scholar
spaCy. ExplosionAI GmbH (2021)
Google Scholar
ExplosionAI GmbH. Linguistic Features: Word Vectors and Semantic Similarity. In: SpaCy Usage Doc. https://spacy.io/usage/linguistic-features#vectors-similarity (2021). Accessed 17 Mar 2021
Landauer, T.K., Foltz, P.W., Laham, D.: An introduction to latent semantic analysis. Discourse Process. 25, 259–284 (1998). https://doi.org/10.1080/01638539809545028
CrossRef
Google Scholar
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41, 391–407 (1990)
CrossRef
Google Scholar
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. ArXiv181004805 Cs (2019)
Google Scholar
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Hoboken, NJ (2010)
MATH
Google Scholar
Landauer, T.K.: LSA as a theory of meaning. In: Landauer, T.K., McNamara, D.S., Dennis, S., Kintsch, W. (eds.) Handbook of latent semantic analysis, pp. 3–34. Routledge, New York (2011)
Google Scholar
Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. ArXiv13104546 Cs Stat (2013)
Google Scholar
Martin, D.I., Berry, M.W.: Mathematical foundations behind latent semantic analysis. In: Landauer, T.K., McNamara, D.S., Dennis, S., Kintsch, W. (eds.) Handbook of latent semantic analysis, pp. 35–56. Routledge, New York (2011)
Google Scholar
Nayak, P.: Understanding searches better than ever before. In: Google. https://blog.google/products/search/search-language-understanding-bert/ (2019). Accessed 24 Feb 2021
Guberović, E., Turčinović, F., Relja, Z., Bosnić, I.: In search of a syllabus: comparing computer science courses. In: 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0588–0592. IEEE, Opatija (2018)
CrossRef
Google Scholar
Fu, Q., Zhuang, Y., Gu, J., Zhu, Y., Guo, X.: Agreeing to disagree: Choosing among eight topic-modeling methods. Big Data Res. 23, 100173 (2021). https://doi.org/10.1016/j.bdr.2020.100173
CrossRef
Google Scholar
Miller, T.: Essay assessment with latent semantic analysis. J. Educ. Comput. Res. 29, 495–512 (2003). https://doi.org/10.2190/W5AR-DYPW-40KX-FL99
CrossRef
Google Scholar
Evangelopoulos, N.E.: Latent semantic analysis. Wiley Interdiscip. Rev. Cogn. Sci. 4, 683–692 (2013). https://doi.org/10.1002/wcs.1254
CrossRef
Google Scholar
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM. 18, 613–620 (1975). https://doi.org/10.1145/361219.361220
CrossRef
MATH
Google Scholar
Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, pp. 45–50. University of Malta, Valletta, MT (2010)
Google Scholar
Schatten, M., Tomičić, I., Okreša Ðurić, B.: Orchestration platforms for hybrid artificial intelligence in computer games -- a conceptual model. In: Strahonja, V., Steingartner, W., Kirinić, V. (eds.) Central European conference on information and intelligent systems, pp. 3–8. Varaždin, Faculty of Organization and Informatics, University of Zagreb (2020)
Google Scholar
Karagiannis, D., Buchmann, R.A., Burzynski, P., Reimer, U., Walch, M.: Fundamental conceptual modeling languages in OMiLAB. In: Karagiannis, D., Mayr, H.C., Mylopoulos, J. (eds.) Domain-Specific Conceptual Modeling, 1st edn, pp. 3–30. Springer, Cham (2016)
CrossRef
Google Scholar
Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) E-commerce and web technologies, pp. 182–182. Springer, Aix-en-Provence (2002)
CrossRef
Google Scholar
BOC Gmbh. ADOxx. BOC Gmbh, Vienna, AT. (2016)
Google Scholar
Grinberg, M.: Flask web development: developing web applications with python, 2nd edn. O’Reilly Media, Sebastopol, CA (2018)
Google Scholar
Lewis J, Fowler M.: Microservices. In: martinfowler.com. https://martinfowler.com/articles/microservices.html. Accessed 27 Mar 2021