Skip to main content

Digital Twin for Cybersecurity: Towards Enhancing Cyber Resilience

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (BROADNETS 2021)

Abstract

Digital Twin (DT) impacts significantly to both industries and research. It has emerged as a promising technology enabling us to add value to our lives and society. DT enables us to virtualize any physical systems and observe real-time dynamics of their status, processes, and functions by using the data obtained from the physical counterpart. This paper attempts to explore a new direction to enhance cyber resilience in the perspective of cybersecurity and Digital Twins. We enumerate definitions of the Digital Twin concept to introduce readers to this disruptive concept. We then explore the existing literature to develop a holistic analysis of the DT’s integration into cybersecurity. Our research questions develop a novel roadmap for a promising direction of research, which is worth exploring in the future and is validated by an extensive and systematic survey of recent works. Our research has aimed to properly illustrate the current research state in this area and can benefit both community and industry to further the integration of Digital Twins into Cybersecurity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://ibm.co/3vCiwl5.

  2. 2.

    https://gtnr.it/337j7Py.

References

  1. Ahmadi-Assalemi, G., et al.: Digital twins for precision healthcare. In: Jahankhani, H., Kendzierskyj, S., Chelvachandran, N., Ibarra, J. (eds.) Cyber Defence in the Age of AI, Smart Societies and Augmented Humanity. ASTSA, pp. 133–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-35746-7_8

    Chapter  Google Scholar 

  2. Ahmadi-Assalemi, G., Al-Khateeb, H.M., Epiphaniou, G., Cosson, J., Jahankhani, H., Pillai, P.: Federated blockchain-based tracking and liability attribution framework for employees and cyber-physical objects in a smart workplace. In: Proceedings of the 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3), pp. 1–9. IEEE (2019)

    Google Scholar 

  3. Akbarian, F., Fitzgerald, E., Kihl, M.: Intrusion detection in digital twins for industrial control systems. In: Proceedings of the 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM), pp. 1–6. IEEE (2020)

    Google Scholar 

  4. Aldwairi, T., Perera, D., Novotny, M.A.: An evaluation of the performance of restricted Boltzmann machines as a model for anomaly network intrusion detection. Comput. Networks 144, 111–119 (2018)

    Article  Google Scholar 

  5. Babu, S.: Detecting anomalies in Users-An UEBA approach. In: Proceedings of the International Conference on Industrial Engineering and Operations Management, pp. 863–876 (2020)

    Google Scholar 

  6. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019)

    Article  Google Scholar 

  7. Becue, A., et al.: Cyberfactory# 1-securing the industry 4.0 with cyber-ranges and digital twins. In: Proceedings of the 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS), pp. 1–4. IEEE (2018)

    Google Scholar 

  8. Becue, A., Maia, E., Feeken, L., Borchers, P., Praca, I.: A new concept of digital twin supporting optimization and resilience of factories of the future. Appl. Sci. 10(13), 4482 (2020)

    Article  Google Scholar 

  9. Bitton, R., et al.: Deriving a cost-effective digital twin of an ICS to facilitate security evaluation. In: Lopez, J., Zhou, J., Soriano, M. (eds.) ESORICS 2018. LNCS, vol. 11098, pp. 533–554. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99073-6_26

    Chapter  Google Scholar 

  10. Bruynseels, K., Santoni de Sio, F., van den Hoven, J.: Digital twins in health care: ethical implications of an emerging engineering paradigm. Front. Genet. 9, 31 (2018)

    Google Scholar 

  11. Buldakova, T., Suyatinov, S.: Hierarchy of human operator models for digital twin. In: Proceedings of the 2019 International Russian Automation Conference (RusAutoCon), pp. 1–5. IEEE (2019)

    Google Scholar 

  12. Caselli, M., Zambon, E., Amann, J., Sommer, R., Kargl, F.: Specification mining for intrusion detection in networked control systems. In: Proceedings of the 25th USENIX Security Symposium (USENIX Security 16), pp. 791–806 (2016)

    Google Scholar 

  13. Cheh, C., Keefe, K., Feddersen, B., Chen, B., Temple, W.G., Sanders, W.H.: Developing models for physical attacks in cyber-physical systems. In: Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and Privacy, pp. 49–55 (2017)

    Google Scholar 

  14. Chen, X., et al.: Android HIV: a study of repackaging malware for evading machine-learning detection. IEEE Trans. Inf. Forensics Secur. 15, 987–1001 (2019)

    Article  Google Scholar 

  15. Coppinger, R.: Design through the looking glass [digital twins of real products]. Eng. Technol. 11(11), 58–60 (2016)

    Article  Google Scholar 

  16. Damjanovic-Behrendt, V.: A digital twin-based privacy enhancement mechanism for the automotive industry. In: 2018 International Conference on Intelligent Systems (IS), pp. 272–279. IEEE (2018)

    Google Scholar 

  17. Dietz, M., Pernul, G.: Unleashing the digital twin’s potential for ICS security. IEEE Secur. Priv. 18(4), 20–27 (2020)

    Article  Google Scholar 

  18. Dietz, M., Putz, B., Pernul, G.: A distributed ledger approach to digital twin secure data sharing. In: Foley, S.N. (ed.) DBSec 2019. LNCS, vol. 11559, pp. 281–300. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22479-0_15

    Chapter  Google Scholar 

  19. Dietz, M., Vielberth, M., Pernul, G.: Integrating digital twin security simulations in the security operations center. In: Proceedings of the 15th International Conference on Availability, Reliability and Security, pp. 1–9 (2020)

    Google Scholar 

  20. Eckhart, M., Ekelhart, A.: A specification-based state replication approach for digital twins. In: Proceedings of the 2018 Workshop on Cyber-Physical Systems Security and Privacy, pp. 36–47 (2018)

    Google Scholar 

  21. Eckhart, M., Ekelhart, A.: Towards security-aware virtual environments for digital twins. In: Proceedings of the 4th ACM Workshop on Cyber-physical System Security, pp. 61–72 (2018)

    Google Scholar 

  22. Eckhart, M., Ekelhart, A.: Digital twins for cyber-physical systems security: state of the art and outlook. In: Security and Quality in Cyber-Physical Systems Engineering, pp. 383–412. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25312-7_14

    Chapter  Google Scholar 

  23. Farsi, M., Daneshkhah, A., Hosseinian-Far, A., Jahankhani, H.: Digital Twin Technologies and Smart Cities. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18732-3

  24. Graessler, I., Pöhler, A.: Integration of a digital twin as human representation in a scheduling procedure of a cyber-physical production system. In: Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 289–293. IEEE (2017)

    Google Scholar 

  25. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-38756-7_4

    Chapter  Google Scholar 

  26. Hallaq, B., Nicholson, A., Smith, R., Maglaras, L., Janicke, H., Jones, K.: CYRAN: a hybrid cyber range for testing security on ICS/SCADA systems. In: Cyber Security and Threats: Concepts, Methodologies, Tools, and Applications, pp. 622–637. IGI Global (2018)

    Google Scholar 

  27. Hearn, M., Rix, S.: Cybersecurity considerations for digital twin implementations. IIC J. Innov. 107–113 (2019)

    Google Scholar 

  28. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020)

    Article  Google Scholar 

  29. Katzenbeisser, S., Petitcolas, F.: Digital Watermarking. Artech House, London 2 (2000)

    Google Scholar 

  30. Kaur, M.J., Mishra, V.P., Maheshwari, P.: The convergence of digital twin, IoT, and machine learning: transforming data into action. In: Farsi, M., Daneshkhah, A., Hosseinian-Far, A., Jahankhani, H. (eds.) Digital Twin Technologies and Smart Cities. IT, pp. 3–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18732-3_1

    Chapter  Google Scholar 

  31. Laaki, H., Miche, Y., Tammi, K.: Prototyping a digital twin for real time remote control over mobile networks: application of remote surgery. IEEE Access 7, 20325–20336 (2019)

    Article  Google Scholar 

  32. Liao, H.J., Lin, C.H.R., Lin, Y.C., Tung, K.Y.: Intrusion detection system: a comprehensive review. J. Network Comput. Appl. 36(1), 16–24 (2013)

    Article  Google Scholar 

  33. Lim, K.Y.H., Zheng, P., Chen, C.H.: A state-of-the-art survey of digital twin: techniques, engineering product lifecycle management and business innovation perspectives. J. Intell. Manuf. 31(6), 1–25 (2019)

    Google Scholar 

  34. Liu, L., De Vel, O., Han, Q.L., Zhang, J., Xiang, Y.: Detecting and preventing cyber insider threats: a survey. IEEE Commun. Surv. Tutorials 20(2), 1397–1417 (2018)

    Article  Google Scholar 

  35. Liu, M., Fang, S., Dong, H., Xu, C.: Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 58, 346–361 (2020)

    Article  Google Scholar 

  36. Lv, L., Wang, W., Zhang, Z., Liu, X.: A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine. Knowl. Based Syst. 195, 105648 (2020)

    Article  Google Scholar 

  37. Malik, N.S., Collins, R., Vamburkar, M.: Cyberattack pings data systems of at least four gas networks (2018)

    Google Scholar 

  38. Mennenga, M., Cerdas, F., Thiede, S., Herrmann, C.: Exploring the opportunities of system of systems engineering to complement sustainable manufacturing and life cycle engineering. Procedia CIRP 80, 637–642 (2019)

    Article  Google Scholar 

  39. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: a survey on technical features, scenarios, and architectural models. Proc. IEEE 108(10), 1785–1824 (2020)

    Article  Google Scholar 

  40. Mittal, S., Tolk, A., Pyles, A., Van Balen, N., Bergollo, K.: Digital twin modeling, co-simulation and cyber use-case inclusion methodology for IoT systems. In: Proceedings of the 2019 Winter Simulation Conference (WSC), pp. 2653–2664. IEEE (2019)

    Google Scholar 

  41. Mittal, S., Zeigler, B.P., Tolk, A., Õren, T.: Theory and practice of M&S in cyber environments. In: The Profession of Modeling and Simulation: Discipline, Ethics, Education, Vocation, Societies and Economics. Wiley Online Library (2017)

    Google Scholar 

  42. Mourtzis, D., Doukas, M., Bernidaki, D.: Simulation in manufacturing: review and challenges. Procedia CIRP 25, 213–229 (2014)

    Article  Google Scholar 

  43. Parmar, R., Leiponen, A., Thomas, L.D.: Building an organizational digital twin. Bus. Horiz. 63(6), 725–736 (2020)

    Article  Google Scholar 

  44. Pham, C., Tang, D., Chinen, K.i., Beuran, R.: CYRIS: a cyber range instantiation system for facilitating security training. In: Proceedings of the Seventh Symposium on Information and Communication Technology, pp. 251–258 (2016)

    Google Scholar 

  45. Piggin, R., Buffey, I.: Active defence using an operational technology honeypot (2016). https://bit.ly/3njohBz

  46. Pokhrel, S.R., Garg, S.: Multipath communication with deep Q-Network for industry 4.0 automation and orchestration. IEEE Trans. Ind. Inform. 17(4), 2852–2859 (2020)

    Google Scholar 

  47. Pokhrel, S.R., Pan, L., Kumar, N., Doss, R., Le Vu, H.: Multipath TCP meets transfer learning: a novel edge-based learning for industrial IoT. IEEE Internet Things J. 8(13), 10299–10307 (2021)

    Article  Google Scholar 

  48. Pokhrel, S.R., Qu, Y., Gao, L.: QoS-aware personalized privacy with multipath TCP for industrial IoT: analysis and design. IEEE Internet Things J. 7(6), 4849–4861 (2020)

    Article  Google Scholar 

  49. Pokhrel, S.R., Vu, H.L., Cricenti, A.L.: Adaptive admission control for IoT applications in home wifi networks. IEEE Trans. Mob. Comput. 19(12), 2731–2742 (2019)

    Article  Google Scholar 

  50. Polenghi, A., Fumagalli, L., Roda, I.: Role of simulation in industrial engineering: focus on manufacturing systems. IFAC Pap. OnLine 51(11), 496–501 (2018)

    Article  Google Scholar 

  51. Poon, J., Jain, P., Konstantakopoulos, I.C., Spanos, C., Panda, S.K., Sanders, S.R.: Model-based fault detection and identification for switching power converters. IEEE Trans. Power Electron. 32(2), 1419–1430 (2016)

    Article  Google Scholar 

  52. Roosta, T., Nilsson, D.K., Lindqvist, U., Valdes, A.: An intrusion detection system for wireless process control systems. In: Proceedings of the 2008 5th IEEE International Conference on Mobile ad hoc and Sensor Systems, pp. 866–872. IEEE (2008)

    Google Scholar 

  53. Rosenblatt, B., Trippe, B., Mooney, S., et al.: Digital Rights Management. New York (2002)

    Google Scholar 

  54. Rubio, J.E., Alcaraz, C., Roman, R., Lopez, J.: Analysis of intrusion detection systems in industrial ecosystems. In: SECRYPT, pp. 116–128 (2017)

    Google Scholar 

  55. Saad, A., Faddel, S., Youssef, T., Mohammed, O.A.: On the implementation of IoT-based digital twin for networked microgrids resiliency against cyber attacks. IEEE Trans. Smart Grid 11(6), 5138–5150 (2020)

    Article  Google Scholar 

  56. Schinagl, S., Schoon, K., Paans, R.: A framework for designing a security operations centre (SOC). In: Proceedings of the 2015 48th Hawaii International Conference on System Sciences, pp. 2253–2262. IEEE (2015)

    Google Scholar 

  57. Shin, S., Kwon, T., Jo, G.Y., Park, Y., Rhy, H.: An experimental study of hierarchical intrusion detection for wireless industrial sensor networks. IEEE Trans. Ind. Inform. 6(4), 744–757 (2010)

    Article  Google Scholar 

  58. Shultz, K.S., Wang, M., Olson, D.A.: Role overload and underload in relation to occupational stress and health. J. Int. Soc. Investig. Stress 26(2), 99–111 (2010)

    Article  Google Scholar 

  59. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven product design, manufacturing and service with big data. Int. J. Adv. Manuf. Technol. 94(9), 3563–3576 (2018)

    Article  Google Scholar 

  60. Tao, F., Zhang, H., Liu, A., Nee, A.Y.: Digital twin in industry: state-of-the-art. IEEE Trans. Ind. Inform. 15(4), 2405–2415 (2018)

    Article  Google Scholar 

  61. Tao, F., Zhang, M.: Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access 5, 20418–20427 (2017)

    Article  Google Scholar 

  62. Tauber, M., Schmittner, C.: Enabling security and safety evaluation in industry 4.0 use cases with digital twins. ERCIM News (2018)

    Google Scholar 

  63. Tian, Z., et al.: A real-time correlation of host-level events in cyber range service for smart campus. IEEE Access 6, 35355–35364 (2018)

    Article  Google Scholar 

  64. Tuptuk, N., Hailes, S.: Security of smart manufacturing systems. J. Manuf. Syst. 47, 93–106 (2018)

    Article  Google Scholar 

  65. Tuyls, P., Akkermans, A.H.M., Kevenaar, T.A.M., Schrijen, G.-J., Bazen, A.M., Veldhuis, R.N.J.: Practical biometric authentication with template protection. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 436–446. Springer, Heidelberg (2005). https://doi.org/10.1007/11527923_45

    Chapter  Google Scholar 

  66. Uhlemann, T.H.J., Lehmann, C., Steinhilper, R.: The digital twin: realizing the cyber-physical production system for industry 4.0. Procedia CIRP 61, 335–340 (2017)

    Google Scholar 

  67. Urias, V.E., Stout, W.M., Van Leeuwen, B., Lin, H.: Cyber range infrastructure limitations and needs of tomorrow: a position paper. In: Proceedings of the 2018 International Carnahan Conference on Security Technology (ICCST), pp. 1–5. IEEE (2018)

    Google Scholar 

  68. Vielberth, M., Menges, F., Pernul, G.: Human-as-a-security-sensor for harvesting threat intelligence. Cybersecurity 2(1), 1–15 (2019)

    Article  Google Scholar 

  69. Vykopal, J., Ošlejšek, R., Čeleda, P., Vizvary, M., Tovarňák, D.: Kypo cyber range: design and use cases. In: Proceedings of the 12th International Conference on Software Technologies, pp. 310–321. SciTePress (2017)

    Google Scholar 

  70. Wayman, J., Jain, A., Maltoni, D., Maio, D.: An introduction to biometric authentication systems. In: Wayman, J., Jain, A., Maltoni, D., Maio, D. (eds.) Biometric Systems, pp. 1–20. Springer, London (2005). https://doi.org/10.1007/1-84628-064-8_1

  71. Wei, D., Ji, K.: Resilient industrial control system (RICS): concepts, formulation, metrics, and insights. In: Proceedings of the 2010 3rd International Symposium on Resilient Control Systems, pp. 15–22. IEEE (2010)

    Google Scholar 

  72. Wurm, J., et al.: Introduction to cyber-physical system security: a cross-layer perspective. IEEE Trans. Multi Scale Comput. Syst. 3(3), 215–227 (2016)

    Article  Google Scholar 

  73. Yahalom, R., Steren, A., Nameri, Y., Roytman, M., Porgador, A., Elovici, Y.: Improving the effectiveness of intrusion detection systems for hierarchical data. Knowl. Based Syst. 168, 59–69 (2019)

    Article  Google Scholar 

  74. van Zadelhoff, M.: The biggest cybersecurity threats are inside your company. Harvard Bus. Rev. 19 (2016)

    Google Scholar 

  75. Zhang, J., Li, L., Lin, G., Fang, D., Tai, Y., Huang, J.: Cyber resilience in healthcare digital twin on lung cancer. IEEE Access 8, 201900–201913 (2020)

    Article  Google Scholar 

  76. Zhao, Z., Shen, L., Yang, C., Wu, W., Zhang, M., Huang, G.Q.: IoT and digital twin enabled smart tracking for safety management. Comput. Oper. Res. 128, 105183 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faleiro, R., Pan, L., Pokhrel, S.R., Doss, R. (2022). Digital Twin for Cybersecurity: Towards Enhancing Cyber Resilience. In: Xiang, W., Han, F., Phan, T.K. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 413. Springer, Cham. https://doi.org/10.1007/978-3-030-93479-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93479-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93478-1

  • Online ISBN: 978-3-030-93479-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics