Skip to main content

Connected Autonomous Vehicle Platoon Control Through Multi-agent Deep Reinforcement Learning

  • Conference paper
  • First Online:
Broadband Communications, Networks, and Systems (BROADNETS 2021)

Abstract

The rise of the artificial intelligence (AI) brings golden opportunity to accelerate the development of the intelligent transportation system (ITS). The platoon control of connected autonomous vehicle (CAV) as the key technology exhibits superior for improving traffic system. However, there still exist some challenges in multi-objective platoon control and multi-agent interaction. Therefore, this paper proposed a connected autonomous vehicle latoon control approach with multi-agent deep reinforcement learning (MADRL). Finally, the results in stochastic mixed traffic flow based on SUMO (simulation of urban mobility) platform demonstrate that the proposed method is feasible, effective and advanced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, D., Wang, Y., Shen, Y.: Electric vehicle charging and discharging coordination on distribution network using multi-objective particle swarm optimization and fuzzy decision making. Energies 9(3), 186 (2016)

    Article  Google Scholar 

  2. Delgarm, N., Sajadi, B., Kowsary, F., et al.: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO). Appl. Energy 170, 293–303 (2016)

    Article  Google Scholar 

  3. Zhang, Y., Guo, L., Gao, B., Qu, T., Chen, H.: Deterministic promotion reinforcement learning applied to longitudinal velocity control for automated vehicles. IEEE Trans. Veh. Technol. 69(1), 338–348 (2020). https://doi.org/10.1109/TVT.2019.2955959

    Article  Google Scholar 

  4. Xu, G., et al.: Hierarchical speed control for autonomous electric vehicle through deep reinforcement learning and robust control. IET Control Theory Appl. 1–13 (2021). https://doi.org/10.1049/cth2.12211

  5. Jardine, P.T.: A reinforcement learning approach to predictive control design: autonomous vehicle applications. Queen’s University (Canada) (2018)

    Google Scholar 

  6. Hang, P., Lv, C., Huang, C., Cai, J., Hu, Z., Xing, Y.: An integrated framework of decision making and motion planning for autonomous vehicles considering social behaviors. Electr. Eng. Syst. Sci. 1–11 (2020)

    Google Scholar 

  7. Xu, J., Shu, H., Shao, Y.: Modeling of driver behavior on trajectory-speed decision making in minor traffic roadways with complex features. IEEE Trans. Intell. Transp. Syst. 20(1), 41–53 (2019). https://doi.org/10.1109/TITS.2018.2800086

    Article  Google Scholar 

  8. Liu, T., Wang, B., Cao, D., Tang, X., Yang, Y.: Integrated longitudinal speed decision-making and energy efficiency control for connected electrified vehicles. Electr. Eng. Syst. Sci. 1–11 (2020)

    Google Scholar 

  9. He, X., Fei, C., Liu, Y., Yang, K., Ji, X.: Multi-objective longitudinal decision-making for autonomous electric vehicle: a entropy-constrained reinforcement learning approach. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, pp. 1–6 (2020). https://doi.org/10.1109/ITSC45102.2020.9294736

  10. Kreidieh, A.R., Wu, C., Bayen, A.M.: Dissipating stop-and-go waves in closed and open networks via deep reinforcement learning. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 1475–1480. IEEE, November 2018

    Google Scholar 

  11. Vinitsky, E., et al.: Benchmarks for reinforcement learning in mixed-autonomy traffic. In: Conference on Robot Learning, pp. 399–409. PMLR, October 2018

    Google Scholar 

  12. Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In: International Conference on Machine Learning, pp. 22–31. PMLR, July 2017

    Google Scholar 

  13. Bhatnagar, S., Sutton, R.S., Ghavamzadeh, M., Lee, M.: Natural actor-critic algorithms. Automatica 45(11), 2471–2482 (2009)

    Article  MathSciNet  Google Scholar 

  14. Cao, X.R.: A basic formula for online policy gradient algorithms. IEEE Trans. Autom. Control 50(5), 696–699 (2005)

    Article  MathSciNet  Google Scholar 

  15. Schulman, J., Wolski, F., Dhariwal, P., et al.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  16. Wu, C., Kreidieh, A.R., Parvate, K., Vinitsky, E., Bayen, A.M.: Flow: a modular learning framework for mixed autonomy traffic. IEEE Trans. Robot. (2021)

    Google Scholar 

  17. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of sumo-simulation of urban mobility. Int. J. Adv. Syst. Meas. 5(3&4) (2012)

    Google Scholar 

  18. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep reinforcement learning for continuous control. CoRR, vol. abs/1604.06778 (2016). http://arxiv.org/abs/1604.06778

  19. Liang, E., et al.: Ray RLlib: a composable and scalable reinforcement learning library. arXiv preprint arXiv:1712.09381 (2017)

  20. Brockman, G., et al.: OpenAI Gym. arXiv preprint arXiv:1606.01540 (2016)

  21. Treiber, M., Kesting, A.: Trajectory and floating-car data. In: Treiber, M., Kesting, A. (eds.) Traffic Flow Dynamics, pp. 7–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32460-4_2.

  22. Xu, G., et al.: Hierarchical speed control for autonomous electric vehicle through deep reinforcement learning and robust control. IET Control Theory Appl. (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, G., Chen, B., Li, G., He, X. (2022). Connected Autonomous Vehicle Platoon Control Through Multi-agent Deep Reinforcement Learning. In: Xiang, W., Han, F., Phan, T.K. (eds) Broadband Communications, Networks, and Systems. BROADNETS 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 413. Springer, Cham. https://doi.org/10.1007/978-3-030-93479-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93479-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93478-1

  • Online ISBN: 978-3-030-93479-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics