Skip to main content

Brain Injury Biomarkers for Predicting Outcome After Cardiac Arrest

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2022

Abstract

Accurate tools for prognostication after cardiac arrest help clinicians allocate intensive care to patients with a realistic chance of full recovery, and avoid futile care. The advantages of biomarkers reflecting hypoxic brain injury severity after cardiac arrest in comatose patients include objective results that are independent of used medications. The disadvantage of the most studied biomarker, neuron-specific enolase (NSE), however, has been the interpretation of the results due to great variability of the thresholds suggested for poor prognosis. The ideal brain injury biomarker would exclusively be expressed in central nervous tissue and would not be detectable in healthy individuals. In recent years, apart from NSE and another common biomarker, S100B, several promising biomarkers have been shown to predict neurological outcome after cardiac arrest. Neurofilament light (NfL) and tau protein are expressed in myelinated axons in brain white matter, whereas glial fibrillary acidic protein (GFAP) is found mostly in astrocytes, and ubiquitin C-terminal hydrolase-L1 (UCH-L1) is expressed throughout in neurons. However, like NSE and S100B, new biomarkers have shown great variability in thresholds, indicating poor prognosis with low to moderate sensitivity. However, as these different biomarkers originate from slightly different areas of the brain, they could possibly be used together to improve accuracy; for example, combining GFAP and UHC-L1 has been shown to predict neurological outcome more accurately compared to NSE alone. Additionally, the traditional way of using high thresholds to identify patients with poor prognoses may be complemented with a strategy of using low thresholds to predict a favorable outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nolan JP, Sandroni C, Böttiger BW, et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: post-resuscitation care. Resuscitation. 2021;161:220–69.

    PubMed  Google Scholar 

  2. Oksanen T, Tiainen M, Skrifvars MB, Varpula T, Kuitunen A, Castrén M, Pettilä V. Predictive power of serum NSE and OHCA score regarding 6-month neurologic outcome after out-of-hospital ventricular fibrillation and therapeutic hypothermia. Resuscitation. 2009;80:165–70.

    PubMed  Google Scholar 

  3. Tiainen M, Roine RO, Pettilä V, Takkunen O. Serum neuron-specific enolase and S-100B protein in cardiac arrest patients treated with hypothermia. Stroke. 2003;34:2881–6.

    CAS  PubMed  Google Scholar 

  4. Wihersaari L, Ashton NJ, Reinikainen M, et al. Neurofilament light as an outcome predictor after cardiac arrest: a post hoc analysis of the COMACARE trial. Intensive Care Med. 2021;47:39–48.

    PubMed  Google Scholar 

  5. Moseby-Knappe M, Mattsson N, Nielsen N, et al. Serum neurofilament light chain for prognosis of outcome after cardiac arrest. JAMA Neurol. 2019;76:64–71.

    PubMed  Google Scholar 

  6. Leithner C. Neuron specific enolase after cardiac arrest: from 33 to 60 to 100 to NFL? Resuscitation. 2021;168:234–6.

    PubMed  Google Scholar 

  7. Gul SS, Huesgen KW, Wang KK, Mark K, Tyndall JA. Prognostic utility of neuroinjury biomarkers in post out-of-hospital cardiac arrest (OHCA) patient management. Med Hypotheses. 2017;105:34–47.

    CAS  PubMed  Google Scholar 

  8. Ramont L, Thoannes H, Volondat A, Chastang F, Millet M-C, Maquart FX. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med. 2005;43:1215–7.

    CAS  PubMed  Google Scholar 

  9. Streitberger KJ, Leithner C, Wattenberg M, et al. Neuron-specific enolase predicts poor outcome after cardiac arrest and targeted temperature management: a multicenter study on 1,053 patients. Crit Care Med. 2017;45:1145–51.

    PubMed  Google Scholar 

  10. Mlynash M, Buckwalter MS, Okada A, et al. Serum neuron-specific enolase levels from the same patients differ between laboratories: assessment of a prospective post-cardiac arrest cohort. Neurocrit Care. 2013;10:161–6.

    Google Scholar 

  11. Berg KM, Soar J, Andersen LW, et al. Adult advanced life support: 2020 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation. 2020;142:S92–S139.

    PubMed  Google Scholar 

  12. Zandbergen EGJ, Hijdra A, Koelman JHTM, Hart AAM, Vos PE, Verbeek MM, de Haan RJ. Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology. 2006;66:62–8.

    CAS  PubMed  Google Scholar 

  13. Wijdicks EFM, Hijdra A, Young GB, Bassetti CL, Wiebe S. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review). Neurology. 2006;67:203–10.

    CAS  PubMed  Google Scholar 

  14. Lee BK, Jeung KW, Lee HY, Jung YH, Lee DH. Combining brain computed tomography and serum neuron specific enolase improves the prognostic performance compared to either alone in comatose cardiac arrest survivors treated with therapeutic hypothermia. Resuscitation. 2013;84:1387–92.

    CAS  PubMed  Google Scholar 

  15. Larsson IM, Wallin E, Kristofferzon ML, Niessner M, Zetterberg H, Rubertsson S. Post-cardiac arrest serum levels of glial fibrillary acidic protein for predicting neurological outcome. Resuscitation. 2014;85:1654–61.

    CAS  PubMed  Google Scholar 

  16. Stammet P, Collignon O, Hassager C, et al. Neuron-specific enolase as a predictor of death or poor neurological outcome after out-of-hospital cardiac arrest and targeted temperature management at 33°C and 36°C. J Am Coll Cardiol. 2015;65:2104–14.

    CAS  PubMed  Google Scholar 

  17. Helwig K, Seeger F, Hölschermann H, Lischke V, Gerriets T, Niessner M, Foerch C. Elevated serum glial fibrillary acidic protein (GFAP) is associated with poor functional outcome after cardiopulmonary resuscitation. Neurocrit Care. 2017;27:68–74.

    CAS  PubMed  Google Scholar 

  18. Witten L, Gardner R, Holmberg M, et al. Reasons for death in patients successfully resuscitated from out-of-hospital and in-hospital cardiac arrest. Resuscitation. 2019;136:93.

    PubMed  PubMed Central  Google Scholar 

  19. Nakstad ER, Stær-Jensen H, Wimmer H, et al. Late awakening, prognostic factors and long-term outcome in out-of-hospital cardiac arrest—results of the prospective Norwegian Cardio-Respiratory Arrest Study (NORCAST). Resuscitation. 2020;149:170–9.

    PubMed  Google Scholar 

  20. Streitberger KJ, Endisch C, Ploner CJ, et al. Timing of brain computed tomography and accuracy of outcome prediction after cardiac arrest. Resuscitation. 2019;145:8–14.

    PubMed  Google Scholar 

  21. Sen J, Belli A. S100B in neuropathologic states: the CRP of the brain? J Neurosci Res. 2007;85:1373–80.

    CAS  PubMed  Google Scholar 

  22. Jang JH, Park WB, Lim YS, et al. Combination of S100B and procalcitonin improves prognostic performance compared to either alone in patients with cardiac arrest: a prospective observational study. Medicine (Baltimore). 2019;98:e14496.

    Article  CAS  Google Scholar 

  23. Duez CHV, Grejs AM, Jeppesen AN, Schrøder AD, Søreide E, Nielsen JF, Kirkegaard H. Neuron-specific enolase and S-100b in prolonged targeted temperature management after cardiac arrest: a randomised study. Resuscitation. 2018;122:79–86.

    PubMed  Google Scholar 

  24. Stammet P, Dankiewicz J, Nielsen N, et al. Protein S100 as outcome predictor after out-of-hospital cardiac arrest and targeted temperature management at 33 °C and 36 °C. Crit Care. 2017;21:1–10.

    Google Scholar 

  25. Ashton NJ, Janelidze S, al Khleifat A, et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat Commun. 2021;12:1–12.

    Google Scholar 

  26. Rana OR, Schröder JW, Baukloh JK, et al. Neurofilament light chain as an early and sensitive predictor of long-term neurological outcome in patients after cardiac arrest. Int J Cardiol. 2013;168:1322–7.

    PubMed  Google Scholar 

  27. Rundgren M, Friberg H, Cronberg T, Romner B, Petzold A. Serial soluble neurofilament heavy chain in plasma as a marker of brain injury after cardiac arrest. Crit Care. 2012;16:R45.

    Google Scholar 

  28. Moseby-Knappe M, Mattsson-Carlgren N, Stammet P, et al. Serum markers of brain injury can predict good neurological outcome after out-of-hospital cardiac arrest. Intensive Care Med. 2021;47:984–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Simrén J, Ashton NJ, Blennow K, Zetterberg H. Blood neurofilament light in remote settings: alternative protocols to support sample collection in challenging pre-analytical conditions. Alzheimers Dement (Amst). 2021;13:e12145.

    Google Scholar 

  30. Ashton NJ, Suárez-Calvet M, Karikari TK, et al. Effects of pre-analytical procedures on blood biomarkers for Alzheimer’s pathophysiology, glial activation, and neurodegeneration. Alzheimers Dement (Amst). 2021;13:e12168.

    Google Scholar 

  31. Sandelius Å, Zetterberg H, Blennow K, et al. Plasma neurofilament light chain concentration in the inherited peripheral neuropathies. Neurology. 2018;90:e518–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Thelin EP, Zeiler FA, Ercole A, et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: a systematic review. Front Neurol. 2017;8:300.

    PubMed  PubMed Central  Google Scholar 

  33. Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J. 2016;473:2453–62.

    CAS  PubMed  Google Scholar 

  34. Gong B, Leznik E. The role of ubiquitin C-terminal hydrolase L1 in neurodegenerative disorders. Drug News Perspect. 2007;20:365–70.

    CAS  PubMed  Google Scholar 

  35. Anderson TN, Hwang J, Munar M, Papa L, Hinson HE, Vaughan A, Rowell SE. Blood-based biomarkers for prediction of intracranial hemorrhage and outcome in patients with moderate or severe traumatic brain injury. J Trauma Acute Care Surg. 2020;89:80–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ebner F, Moseby-Knappe M, Mattsson-Carlgren N, et al. Serum GFAP and UCH-L1 for the prediction of neurological outcome in comatose cardiac arrest patients. Resuscitation. 2020;154:61–8.

    PubMed  Google Scholar 

  37. Diaz-Arrastia R, Wang KKW, Papa L, et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-l1 and glial fibrillary acidic protein. J Neurotrauma. 2014;31:19.

    PubMed  PubMed Central  Google Scholar 

  38. Hol EM, Pekny M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr Opin Cell Biol. 2015;32:121–30.

    CAS  PubMed  Google Scholar 

  39. Kaneko T, Kasaoka S, Miyauchi T, Fujita M, Oda Y, Tsuruta R, Maekawa T. Serum glial fibrillary acidic protein as a predictive biomarker of neurological outcome after cardiac arrest. Resuscitation. 2009;80:790–4.

    CAS  PubMed  Google Scholar 

  40. Mörtberg E, Zetterberg H, Nordmark J, Blennow K, Rosengren L, Rubertsson S. S-100B is superior to NSE, BDNF and GFAP in predicting outcome of resuscitation from cardiac arrest with hypothermia treatment. Resuscitation. 2011;82:26–31.

    PubMed  Google Scholar 

  41. Hayashida H, Kaneko T, Kasaoka S, et al. Comparison of the predictability of neurological outcome by serum procalcitonin and glial fibrillary acidic protein in postcardiac-arrest patients. Neurocrit Care. 2009;12:252–7.

    Google Scholar 

  42. Rissin DM, Fournier DR, Piech T, et al. Simultaneous detection of single molecules and singulated ensembles of molecules enables immunoassays with broad dynamic range. Anal Chem. 2011;83:2279–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975;72:1858–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Williams DR. Tauopathies: classification and clinical update on neurodegenerative diseases associated with microtubule-associated protein tau. Intern Med J. 2006;36:652–60.

    CAS  PubMed  Google Scholar 

  45. Pluta R, Ułamek-Kozioł M, Januszewski S, Czuczwar SJ. Tau protein dysfunction after brain ischemia. J Alzheimers Dis. 2018;66:429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Randall J, Mörtberg E, Provuncher GK, et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation. 2013;84:351–6.

    CAS  PubMed  Google Scholar 

  47. Mörtberg E, Zetterberg H, Nordmark J, et al. Plasma tau protein in comatose patients after cardiac arrest treated with therapeutic hypothermia. Acta Anaesthesiol Scand. 2011;55:1132–8.

    PubMed  Google Scholar 

  48. Mattsson N, Zetterberg H, Nielsen N, et al. Serum tau and neurological outcome in cardiac arrest. Ann Neurol. 2017;82:665–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wunderlich MT, Lins H, Skalej M, Wallesch CW, Goertler M. Neuron-specific enolase and tau protein as neurobiochemical markers of neuronal damage are related to early clinical course and long-term outcome in acute ischemic stroke. Clin Neurol Neurosurg. 2006;108:558–63.

    PubMed  Google Scholar 

  50. Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6:131–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Skrifvars .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Humaloja, J., Ashton, N.J., Skrifvars, M.B. (2022). Brain Injury Biomarkers for Predicting Outcome After Cardiac Arrest. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2022. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-93433-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93433-0_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93432-3

  • Online ISBN: 978-3-030-93433-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics