Skip to main content

Texture-Based Image Transformations for Improved Deep Learning Classification

  • Conference paper
  • First Online:
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (CIARP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12702))

Included in the following conference series:

Abstract

In this paper, we examine the effect of texture-based image transformation on classification performance. A novel combination of mathematical morphology operations and contrast-limited adaptive histogram equalization is proposed to enhance image textural features. The suggested operations are applied in HSV colour space, where the intensity component is separated from the colour information. Two publicly available, texture-oriented datasets are used for evaluation in this study. The KTH-TIPS2-b dataset is utilised to illustrate the general effectiveness and applicability of the proposed solution on standardized texture images. The Virus Texture dataset is subsequently used to demonstrate a statistically significant classification improvement in a particular biomedical image recognition task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrearczyk, V., Whelan, P.F.: Deep learning in texture analysis and its application to tissue image classification. In: Biomedical Texture Analysis, pp. 95–129. Elsevier (2017)

    Google Scholar 

  2. Bajić, B., Majtner, T., Lindblad, J., Sladoje, N.: Generalised deep learning framework for HEp-2 cell recognition using local binary pattern maps. IET Image Process. 14(6), 1201–1208 (2020)

    Article  Google Scholar 

  3. Cheng, J.Z., Chen, C.M., Shen, D.: Deep learning techniques on texture analysis of chest and breast images. In: Biomedical Texture Analysis, pp. 247–279. Elsevier (2017)

    Google Scholar 

  4. Faraki, M., Harandi, M.T., Porikli, F.: Approximate infinite-dimensional region covariance descriptors for image classification. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1364–1368. IEEE (2015)

    Google Scholar 

  5. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  6. Jintasuttisak, T., Intajag, S.: Color retinal image enhancement by Rayleigh contrast-limited adaptive histogram equalization. In: 14th International Conference on Control, Automation and Systems, pp. 692–697. IEEE (2014)

    Google Scholar 

  7. Kumar, D., Maji, P.: An efficient method for automatic recognition of virus particles in TEM images. In: Deka, B., Maji, P., Mitra, S., Bhattacharyya, D.K., Bora, P.K., Pal, S.K. (eds.) PReMI 2019. LNCS, vol. 11942, pp. 21–31. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34872-4_3

    Chapter  Google Scholar 

  8. Kylberg, G., Uppström, M., Hedlund, K.O., Borgefors, G., Sintorn, I.M.: Segmentation of virus particle candidates in transmission electron microscopy images. J. Microsc. 245(2), 140–147 (2012)

    Article  Google Scholar 

  9. Kylberg, G., Uppström, M., Sintorn, I.-M.: Virus texture analysis using local binary patterns and radial density profiles. In: San Martin, C., Kim, S.-W. (eds.) CIARP 2011. LNCS, vol. 7042, pp. 573–580. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25085-9_68

    Chapter  Google Scholar 

  10. Li, C., Guan, X., Yang, P., Huang, Y., Huang, W., Chen, H.: CDF space covariance matrix of Gabor wavelet with convolutional neural network for texture recognition. IEEE Access 7, 30693–30701 (2019)

    Article  Google Scholar 

  11. Liu, L., Chen, J., Zhao, G., Fieguth, P., Chen, X., Pietikäinen, M.: Texture classification in extreme scale variations using GANet. IEEE Trans. Image Process. 28(8), 3910–3922 (2019)

    Article  MathSciNet  Google Scholar 

  12. Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recognit. 62, 135–160 (2017)

    Article  Google Scholar 

  13. Mallikarjuna, P., Targhi, A.T., Fritz, M., Hayman, E., Caputo, B., Eklundh, J.O.: The KTH-TIPS2 Database (2006)

    Google Scholar 

  14. Matuszewski, D.J., Sintorn, I.M.: Reducing the U-Net size for practical scenarios: virus recognition in electron microscopy images. Comp. Meth. Program Biomed. 178, 31–39 (2019)

    Article  Google Scholar 

  15. Mirmehdi, M., Xie, X., Suri, J.S.: Handbook of Texture Analysis. World Scientific (2008)

    Google Scholar 

  16. Nanni, L., Ghidoni, S., Brahnam, S.: Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognit. 71, 158–172 (2017)

    Article  Google Scholar 

  17. Shih, F., Shen, Y., Zhong, X.: Development of deep learning framework for mathematical morphology. Int. J. Pattern Recognit Artif Intell. 33(6), 1954024 (2019)

    Article  Google Scholar 

  18. Sintorn, I.M., Kylberg, G.: Virus recognition based on local texture. In: 22nd International Conference on Pattern Recognition, pp. 3227–3232. IEEE (2014)

    Google Scholar 

  19. Song, Y., Cai, W., Li, Q., Zhang, F., Dagan Feng, D., Huang, H.: Fusing subcategory probabilities for texture classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4409–4417 (2015)

    Google Scholar 

  20. Stoklasa, R., Majtner, T., Svoboda, D.: Efficient k-NN based HEp-2 cells classifier. Pattern Recognit. 47(7), 2409–2418 (2014)

    Article  Google Scholar 

  21. Sulc, M., Matas, J.: Fast features invariant to rotation and scale of texture. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 47–62. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_4

    Chapter  Google Scholar 

  22. Theera-Umpon, N., Dhompongsa, S.: Morphological granulometric features of nucleus in automatic bone marrow white blood cell classification. IEEE Trans. Inf. Technol. Biomed. 11(3), 353–359 (2007)

    Article  Google Scholar 

  23. Wetzer, E., Lindblad, J., Sintorn, I.-M., Hultenby, K., Sladoje, N.: Towards automated multiscale imaging and analysis in TEM: glomerulus detection by fusion of CNN and LBP maps. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 465–475. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_36

    Chapter  Google Scholar 

  24. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems IV, pp. 474–485. Academic Press Professional (1994)

    Google Scholar 

Download references

Acknowledgement

The work was supported from European Regional Development Fund-Project “Postdoc2@MUNI” (No. CZ.02.2.69/0.0/0.0/18\(\_\)053/0016952), and from Ministry of Education, Science, and Techn. Development of the Republic of Serbia project ON174008, and through the Project EFFICACY from the University of Southern Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Majtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Majtner, T., Bajić, B., Herp, J. (2021). Texture-Based Image Transformations for Improved Deep Learning Classification. In: Tavares, J.M.R.S., Papa, J.P., González Hidalgo, M. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2021. Lecture Notes in Computer Science(), vol 12702. Springer, Cham. https://doi.org/10.1007/978-3-030-93420-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93420-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93419-4

  • Online ISBN: 978-3-030-93420-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics