Skip to main content

Finding Influential Nodes in Complex Networks Using Nearest Neighborhood Trust Value

  • 1932 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 1016)

Abstract

Information spreading in complex networks is an emerging topic in many applications such as social leaders, rumour control, viral marketing, and opinion monitor. Finding the influential nodes plays a pivotal role for information spreading in complex network. This is because influential nodes have capable to spread more information in compared with other nodes. Currently, there are many centrality measures proposed to identify the influential nodes in the complex network such as degree, betweenness, closeness, semi-local centralities and page-rank etc. These centrality measures are defined based on the local and/or global information of nodes in the network. Sheng et al. [18] propose centrality measure based on the information between nodes and structure of network. Inspired by this measure, we propose the nearest neighborhood trust page rank (NTPR) based on structural information of neighbours and nearest neighbours. We proposed the measure based on the similarity between nodes, degree ratio, trust value of neighbours and nearest neighbours. We also perform on various real world network with proposed centrality measure for finding the influential nodes. Furthermore, we also compare the results with existing basic centrality measures.

Keywords

  • Trust value
  • Influential nodes
  • Complex network
  • Centrality measure

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-93413-2_22
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-93413-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Berahmand, K., Bouyer, A., Samadi, N.: A new centrality measure based on the negative and positive effects of clustering coefficient for identifying influential spreaders in complex networks. Chaos Solitons Fractals 110, 41–54 (2018)

    CrossRef  MATH  Google Scholar 

  2. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Networks ISDN Syst. 30(1–7), 107–117 (1998)

    CrossRef  Google Scholar 

  3. Chen, D., Lü, L., Shang, M.S., Zhang, Y.C., Zhou, T.: Identifying influential nodes in complex networks. Physica A 391(4), 1777–1787 (2012)

    CrossRef  Google Scholar 

  4. Dai, J., et al.: Identifying influential nodes in complex networks based on local neighbor contribution. IEEE Access 7, 131719–131731 (2019)

    CrossRef  Google Scholar 

  5. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.: Critical phenomena in complex networks. Rev. Mod. Phys. 80(4), 1275 (2008)

    CrossRef  Google Scholar 

  6. Erkol, Ş, Faqeeh, A., Radicchi, F.: Influence maximization in noisy networks. EPL (Europhysics Letters) 123(5), 58007 (2018)

    CrossRef  Google Scholar 

  7. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry, pp. 35–41 (1977)

    Google Scholar 

  8. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Networks 1(3), 215–239 (1978)

    CrossRef  Google Scholar 

  9. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)

    CrossRef  MATH  Google Scholar 

  10. Kumar, S., Panda, B.: Identifying influential nodes in social networks: neighborhood coreness based voting approach. Physica A 553, 124215 (2020)

    Google Scholar 

  11. Liu, H.L., Ma, C., Xiang, B.B., Tang, M., Zhang, H.F.: Identifying multiple influential spreaders based on generalized closeness centrality. Physica A 492, 2237–2248 (2018)

    CrossRef  Google Scholar 

  12. Lü, L., Zhang, Y.C., Yeung, C.H., Zhou, T.: Leaders in social networks, the delicious case. PLoS ONE 6(6), e21202 (2011)

    CrossRef  Google Scholar 

  13. Lv, Z., Zhao, N., Xiong, F., Chen, N.: A novel measure of identifying influential nodes in complex networks. Physica A 523, 488–497 (2019)

    CrossRef  Google Scholar 

  14. Nomura, S., Oyama, S., Hayamizu, T., Ishida, T.: Analysis and improvement of hits algorithm for detecting web communities. Syst. Comput. Japan 35(13), 32–42 (2004)

    CrossRef  Google Scholar 

  15. Opsahl, T.: The caenorhabditis elegans worm’s neural network (2003). https://toreopsahl.com/datasets/#celegans

  16. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). https://networkrepository.com

  17. Saramäki, J., Kivelä, M., Onnela, J.P., Kaski, K., Kertesz, J.: Generalizations of the clustering coefficient to weighted complex networks. Phys. Rev. E 75(2), 027105 (2007)

    CrossRef  Google Scholar 

  18. Sheng, J., Zhu, J., Wang, Y., Wang, B., Hou, Z., et al.: Identifying influential nodes of complex networks based on trust-value. Algorithms 13(11), 280 (2020)

    CrossRef  MathSciNet  Google Scholar 

  19. Xuan, Z., Fengming, Z., Kewu, L., Xiao-Bin, H., Hu-Sheng, W.: Finding vital node by node importance evaluation matrix in complex networks. Acta Physica Sinica 61(5), 1–7 (2012)

    Google Scholar 

  20. Yang, J., Yao, C., Ma, W., Chen, G.: A study of the spreading scheme for viral marketing based on a complex network model. Physica A 389(4), 859–870 (2010)

    CrossRef  Google Scholar 

  21. Yang, R., Wang, B.H., Ren, J., Bai, W.J., Shi, Z.W., Wang, W.X., Zhou, T.: Epidemic spreading on heterogeneous networks with identical infectivity. Phys. Lett. A 364(3–4), 189–193 (2007)

    CrossRef  MATH  Google Scholar 

  22. Zhao, X., Liu, F., Wang, J., Li, T., et al.: Evaluating influential nodes in social networks by local centrality with a coefficient. ISPRS Int. J. Geo Inf. 6(2), 35 (2017)

    CrossRef  Google Scholar 

  23. Zhao, X., Xing, S., Wang, Q., et al.: Identifying influential spreaders in social networks via normalized local structure attributes. IEEE Access 6, 66095–66104 (2018)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koduru Hajarathaiah or Murali Krishna Enduri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hajarathaiah, K., Enduri, M.K., Anamalamudi, S. (2022). Finding Influential Nodes in Complex Networks Using Nearest Neighborhood Trust Value. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1016. Springer, Cham. https://doi.org/10.1007/978-3-030-93413-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93413-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93412-5

  • Online ISBN: 978-3-030-93413-2

  • eBook Packages: EngineeringEngineering (R0)