Skip to main content

Experiments on F-Restricted Bi-pattern Mining

  • 1979 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 1015)

Abstract

Bi-pattern mining has been previously introduced to mine attributed networks in which nodes may have two roles, as bi-partite or directed networks. A bi-pattern is then made of a pair of attribute patterns, and has a pair of support sets to figure the occurrences of the bi-pattern. Restricted bi-pattern mining has then been introduced to enforce both components of a bi-pattern to share part of their attribute content, so leading to a reduced bi-pattern space. The definition of a new closure operator allows then to enumerate such closed restricted bi-patterns. The presentation was theoretical and no experiments were provided. Our contribution is practical, it displays experiments comparing efficiency and results of restricted bi-pattern mining to their unrestricted bi-pattern mining counterparts.

Keywords

  • Closed pattern mining
  • Core subgraph
  • Attributed network
  • Bi-pattern mining

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-93409-5_45
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   309.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-93409-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   399.99
Price excludes VAT (USA)
Hardcover Book
USD   399.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. 1.

    d[e] is the image of e by d, i.e. \(d[e]=\{d(v) | v \in e\}\).

  2. 2.

    An atom a in a (finite) ordered set A with a minimum \(\bot \) is an element greater than \(\bot \) and such that there is no other element between \(\bot \) and a.

  3. 3.

    Available at https://lipn.univ-paris13.fr/MinerLC/.

References

  1. Silva, A., Meira, W., Jr., Zaki, M.J.: Mining attribute-structure correlated patterns in large attributed graphs. Proc. VLDB Endow. 5(5), 466–477 (2012)

    CrossRef  Google Scholar 

  2. Galbrun, E., Gionis, A., Tatti, N.: Overlapping community detection in labeled graphs. Data Min. Knowl. Discov. 28(5–6), 1586–1610 (2014)

    CrossRef  MathSciNet  Google Scholar 

  3. Atzmueller, M., Doerfel, S., Mitzlaff, F.: Description-oriented community detection using exhaustive subgroup discovery. Inf. Sci. 329, 965–984 (2016)

    CrossRef  Google Scholar 

  4. Soldano, H., Santini, G.: Graph abstraction for closed pattern mining in attributed networks. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) European Conference in Artificial Intelligence (ECAI). Frontiers in Artificial Intelligence and Applications, vol. 263, pp. 849–854. IOS Press (2014)

    Google Scholar 

  5. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5, 269–287 (1983)

    CrossRef  MathSciNet  Google Scholar 

  6. Batagelj, V., Zaversnik, M.: Fast algorithms for determining (generalized) core groups in social networks. Adv. Data Anal. Classif. 5(2), 129–145 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Borgatti, S.P., Everett, M.G.: Network analysis of 2-mode data. Soc. Netw. 19(3), 243–269 (1997)

    CrossRef  Google Scholar 

  8. Soldano, H., Santini, G., Bouthinon, D., Bary, S., Lazega, E.: Bi-pattern mining of attributed networks. Appl. Netw. Sci. 4(1), 37 (2019)

    CrossRef  Google Scholar 

  9. Zevio, S., Santini, G., Soldano, H., Zargayouna, H., Charnois, T.: A combination of semantic annotation and graph mining for expert finding in scholarly data. In: Proceedings of the Graph Embedding and Mining (GEM) Workshop at ECML PKDD (2020)

    Google Scholar 

  10. Santini, G., Soldano, H., Zevio, S.: Restricted bi-pattern mining. In: Braun, T., Gehrke, M., Hanika, T., Hernandez, N. (eds.) ICCS 2021. LNCS (LNAI), vol. 12879, pp. 200–207. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86982-3_15

    CrossRef  Google Scholar 

  11. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5), 604–632 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Pernelle, N., Rousset, M.-C., Soldano, H., Ventos, V.: Zoom: a nested Galois lattices-based system for conceptual clustering. J. Exp. Theor. Artif. Intell. 2/3(14), 157–187 (2002)

    CrossRef  MATH  Google Scholar 

  13. Boley, M., Horváth, T., Poigné, A., Wrobel, S.: Listing closed sets of strongly accessible set systems with applications to data mining. Theor. Comput. Sci. 411(3), 691–700 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Davey, B., Priestley, H.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    CrossRef  MATH  Google Scholar 

  15. Soldano, H., Santini, G., Bouthinon, D.: Attributed graph pattern set selection under a distance constraint. In: Cherifi, H., Gaito, S., Mendes, J.F., Moro, E., Rocha, L.M. (eds.) COMPLEX NETWORKS 2019. SCI, vol. 882, pp. 228–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36683-4_19

    CrossRef  Google Scholar 

  16. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    CrossRef  Google Scholar 

  17. Soldano, H., Santini, G., Bouthinon, D., Lazega, E.: Hub-authority cores and attributed directed network mining. In: International Conference on Tools with Artificial Intelligence (ICTAI), Boston, MA, USA, 7–9 November 2017, pp. 1120–1127. IEEE Computer Society (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry Soldano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Santini, G., Soldano, H., Zevio, S. (2022). Experiments on F-Restricted Bi-pattern Mining. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications X. COMPLEX NETWORKS 2021. Studies in Computational Intelligence, vol 1015. Springer, Cham. https://doi.org/10.1007/978-3-030-93409-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93409-5_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93408-8

  • Online ISBN: 978-3-030-93409-5

  • eBook Packages: EngineeringEngineering (R0)