Skip to main content

Ventilator-Induced Lung Injury and Lung Protective Ventilation

  • Chapter
  • First Online:
Mechanical Ventilation from Pathophysiology to Clinical Evidence

Abstract

Lung cells react to forces applied during mechanical ventilation by activating a large variety of biological responses, from proliferation to inflammation or cell death. In heterogeneous lungs, regional volumes and pressures are unevenly distributed, enhancing these mechanosensitive cell responses and causing tissue damage. Inflammation, apoptosis, and matrix remodeling are hallmarks of this condition, termed Ventilator-Induced Lung Injury (VILI). Limitation of VILI is a major goal in the current critical care, but there is no gold standard for its monitoring. As no pharmacological treatment has shown a clinical benefit, optimization of mechanical ventilation remains the only available approach in critically ill patients. Protective ventilatory strategies limit tidal volumes to avoid overdistension and apply positive end-expiratory pressure to ensure a lung rest volume that guarantees gas exchange and minimizes cyclic changes in aeration. However, only reduction of tidal volume in patients with previous lung injury has shown a significant reduction in mortality. Improvements in monitoring and patient selection can help to personalize ventilatory therapy to avoid further lung damage caused by mechanical ventilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dreyfuss D, Saumon G. Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med. 1998;157:294–323.

    Article  CAS  Google Scholar 

  2. Fothergill J. Observations on a case published in the last volume of the medical essays, &c. of recovering a man dead in appearance, by distending the lungs with air. Philos Trans R Soc. 1744;43:275–81.

    Article  Google Scholar 

  3. Albaiceta GM, Brochard L, Dos Santos CC, et al. The central nervous system during lung injury and mechanical ventilation: a narrative review. Br J Anaesth. 2021;127:648–59.

    Article  Google Scholar 

  4. Williams AE, Chambers RC. The mercurial nature of neutrophils: still an enigma in ARDS? Am J Physiol Lung Cell Mol Physiol. 2014;306:L217–30.

    Article  CAS  Google Scholar 

  5. Haitsma JJ, Uhlig S, Goggel R, Verbrugge SJ, Lachmann U, Lachmann B. Ventilator-induced lung injury leads to loss of alveolar and systemic compartmentalization of tumor necrosis factor-alpha. Intensive Care Med. 2000;26:1515–22.

    Article  CAS  Google Scholar 

  6. Geiser T, Jarreau PH, Atabai K, Matthay MA. Interleukin-1beta augments in vitro alveolar epithelial repair. Am J Physiol Lung Cell Mol Physiol. 2000;279:L1184–90.

    Article  CAS  Google Scholar 

  7. López-Martínez C, Huidobro C, Albaiceta GM, López-Alonso I. Mechanical stretch modulates cell migration in the lungs. Ann Transl Med. 2018;6:28.

    Article  Google Scholar 

  8. Crosby LM, Luellen C, Zhang Z, Tague LL, Sinclair SE, Waters CM. Balance of life and death in alveolar epithelial type II cells: proliferation, apoptosis, and the effects of cyclic stretch on wound healing. Am J Physiol Lung Cell Mol Physiol. 2011;301:L536–46.

    Article  CAS  Google Scholar 

  9. Pelosi P, Rocco PR. Effects of mechanical ventilation on the extracellular matrix. Intensive Care Med. 2008;34:631–9.

    Article  CAS  Google Scholar 

  10. Blazquez-Prieto J, Lopez-Alonso I, Amado-Rodriguez L, Huidobro C, Gonzalez-Lopez A, Kuebler WM, Albaiceta GM. Impaired lung repair during neutropenia can be reverted by matrix metalloproteinase-9. Thorax. 2018;73:321–30.

    Article  Google Scholar 

  11. Chiumello D, Carlesso E, Cadringher P, et al. Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am J Respir Crit Care Med. 2008;178:346–55.

    Article  Google Scholar 

  12. Gonzalez-Lopez A, Garcia-Prieto E, Batalla-Solis E, Amado-Rodriguez L, Avello N, Blanch L, Albaiceta GM. Lung strain and biological response in mechanically ventilated patients. Intensive Care Med. 2012;38:240–7.

    Article  CAS  Google Scholar 

  13. Smith LS, Gharib SA, Frevert CW, Martin TR. Effects of age on the synergistic interactions between lipopolysaccharide and mechanical ventilation in mice. Am J Respir Cell Mol Biol. 2010;43:475–86.

    Article  CAS  Google Scholar 

  14. Gattinoni L, Marini JJ, Pesenti A, Quintel M, Mancebo J, Brochard L. The “baby lung” became an adult. Intensive Care Med. 2016;42:663–73.

    Article  Google Scholar 

  15. Puybasset L, Gusman P, Muller JC, Cluzel P, Coriat P, Rouby JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome. Intensive Care Med. 2000;26:1215–27.

    Article  CAS  Google Scholar 

  16. Mitzner W. Mechanics of the lung in the 20th century. Compr Physiol. 2011;1:2009–27.

    Article  Google Scholar 

  17. International consensus conferences in intensive care medicine. Ventilator-associated lung injury in ARDS. American Thoracic Society, European Society of Intensive Care Medicine, Societe de Reanimation Langue Francaise. Intensive Care Med. 1999;25:1444–52.

    Google Scholar 

  18. Villar J, Martín-Rodríguez C, Domínguez-Berrot AM, et al. A quantile analysis of plateau and driving pressures: effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. Crit Care Med. 2017;45:843–50.

    Article  Google Scholar 

  19. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015;372:747–55.

    Article  CAS  Google Scholar 

  20. Albaiceta GM, Blanch L, Lucangelo U. Static pressure-volume curves of the respiratory system: were they just a passing fad? Curr Opin Crit Care. 2008;14:80–6.

    Article  Google Scholar 

  21. Garcia-Prieto E, Lopez-Aguilar J, Parra-Ruiz D, Amado-Rodriguez L, Lopez-Alonso I, Blazquez-Prieto J, Blanch L, Albaiceta GM. Impact of recruitment on static and dynamic lung strain in acute respiratory distress syndrome. Anesthesiology. 2016;124:443–52.

    Article  Google Scholar 

  22. Terragni PP, Rosboch G, Tealdi A, et al. Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2007;175:160–6.

    Article  CAS  Google Scholar 

  23. Frerichs I, Amato MBP, van Kaam AH, et al. Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the translational EIT development study group. Thorax. 2017;72:83–93.

    Article  Google Scholar 

  24. Spadaro S, Park M, Turrini C, et al. Biomarkers for Acute Respiratory Distress syndrome and prospects for personalised medicine. J Inflamm Lond Engl. 2019;16:1.

    Article  Google Scholar 

  25. Frank JA, Gutierrez JA, Jones KD, Allen L, Dobbs L, Matthay MA. Low tidal volume reduces epithelial and endothelial injury in acid- injured rat lungs. Am J Respir Crit Care Med. 2002;165:242–9.

    Article  Google Scholar 

  26. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.

    Article  Google Scholar 

  27. Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–54.

    Article  CAS  Google Scholar 

  28. Deans KJ, Minneci PC, Cui X, Banks SM, Natanson C, Eichacker PQ. Mechanical ventilation in ARDS: one size does not fit all. Crit Care Med. 2005;33:1141–3.

    Article  Google Scholar 

  29. Amado-Rodríguez L, Del Busto C, López-Alonso I, et al. Biotrauma during ultra-low tidal volume ventilation and venoarterial extracorporeal membrane oxygenation in cardiogenic shock: a randomized crossover clinical trial. Ann Intensive Care. 2021;11:132.

    Article  Google Scholar 

  30. Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124:1100–8.

    Article  Google Scholar 

  31. Spinelli E, Mauri T, Beitler JR, Pesenti A, Brodie D. Respiratory drive in the acute respiratory distress syndrome: pathophysiology, monitoring, and therapeutic interventions. Intensive Care Med. 2020;46:606–18.

    Article  Google Scholar 

  32. Uhlig S, Uhlig U. Pharmacological interventions in ventilator-induced lung injury. Trends Pharmacol Sci. 2004;25:592–600.

    Article  CAS  Google Scholar 

  33. Pereira Romano ML, Maia IS, Laranjeira LN, et al. Driving pressure-limited strategy for patients with acute respiratory distress syndrome. A pilot randomized clinical trial. Ann Am Thorac Soc. 2020;17:596–604.

    Article  Google Scholar 

  34. Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2008;359:2095–104.

    Article  CAS  Google Scholar 

  35. Beitler JR, Sarge T, Banner-Goodspeed VM, Gong MN, Cook D, Novack V, Loring SH, Talmor D, EPVent-2 Study Group. Effect of titrating positive end-expiratory pressure (PEEP) with an esophageal pressure-guided strategy vs an empirical high peep-fio2 strategy on death and days free from mechanical ventilation among patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2019;321:846–57.

    Article  Google Scholar 

  36. Combes A, Fanelli V, Pham T, Ranieri VM, European Society of Intensive Care Medicine Trials Group and the “Strategy of Ultra-Protective Lung Ventilation with Extracorporeal CO2 Removal for New-Onset Moderate to Severe ARDS” (SUPERNOVA) Investigators. Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study. Intensive Care Med. 2019;45:592–600.

    Article  Google Scholar 

  37. Rozencwajg S, Guihot A, Franchineau G, et al. Ultra-protective ventilation reduces biotrauma in patients on venovenous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Crit Care Med. 2019;47:1505–12.

    Article  Google Scholar 

  38. McNamee JJ, Gillies MA, Barrett NA, et al. Effect of lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal vs standard care ventilation on 90-day mortality in patients with acute hypoxemic respiratory failure: the REST randomized clinical trial. JAMA. 2021;326:1013–23.

    Article  CAS  Google Scholar 

  39. Writing Committee and Steering Committee for the RELAx Collaborative Group, Algera AG, Pisani L, et al. Effect of a lower vs higher positive end-expiratory pressure strategy on ventilator-free days in ICU patients without ARDS: a randomized clinical trial. JAMA. 2020;324:2509–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo M. Albaiceta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albaiceta, G.M., Amado-Rodríguez, L. (2022). Ventilator-Induced Lung Injury and Lung Protective Ventilation. In: Bellani, G. (eds) Mechanical Ventilation from Pathophysiology to Clinical Evidence. Springer, Cham. https://doi.org/10.1007/978-3-030-93401-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93401-9_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93400-2

  • Online ISBN: 978-3-030-93401-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics