Skip to main content

Artificial Intelligence and Data Mining Techniques for the Well-Being of Elderly

  • Chapter
  • First Online:
IoT for Elderly, Aging and eHealth

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 108))

  • 401 Accesses

Abstract

The Healthcare sector is one of the important service sectors in the world. Advanced technologies, i.e. artificial intelligence (AI) and data mining techniques, have been implemented to improve the reliability and quality of delivering healthcare-related services. The objective of AI in healthcare is to analyse complex health and medical data by using computational algorithms that mimic human cognitive functions. In comparison, data mining techniques is the process of pattern discovery and extraction from a huge amount of data. In this chapter, the four types of AI and three types of data mining techniques are reviewed, and the applications of such techniques in the healthcare industry are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25.

    Article  Google Scholar 

  2. McCorduck, P., & Cfe, C. (2004). Machines who think: A personal inquiry into the history and prospects of artificial intelligence. CRC Press.

    Google Scholar 

  3. Dernoncourt, F. (2013). Introduction to fuzzy logic. Massachusetts Institute of Technology, 21.

    Google Scholar 

  4. Akkurt, S., Tayfur, G., & Can, S. (2004). Fuzzy logic model for the prediction of cement compressive strength. Cement and Concrete Research, 34(8), 1429–1433.

    Article  Google Scholar 

  5. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353.

    Article  Google Scholar 

  6. Mohamed, A. R., Dahl, G. E., & Hinton, G. (2011). Acoustic modeling using deep belief networks. IEEE Transactions on Audio, Speech, and Language Processing, 20(1), 14–22.

    Article  Google Scholar 

  7. Medjahed, H., Istrate, D., Boudy, J., & Dorizzi, B. (2009). Human activities of daily living recognition using fuzzy logic for elderly home monitoring. In 2009 IEEE International Conference on Fuzzy Systems (pp. 2001–2006). IEEE.

    Google Scholar 

  8. Hussain, A., Wenbi, R., Xiaosong, Z., Hongyang, W., & da Silva, A. L. (2016). Personal home healthcare system for the cardiac patient of smart city using fuzzy logic. Journal of Advances in Information Technology, 7(1).

    Google Scholar 

  9. Kumar, D., Singh, J., Singh, O., & Seema. (2013). A fuzzy logic-based decision support system for the evaluation of suppliers in supply chain management practices. Mathematical and Computer Modelling, 58(11–12), 1679–1695.

    Article  MATH  Google Scholar 

  10. Lee, C. K. H. (2019). A knowledge-based product development system in the chemical industry. Journal of Intelligent Manufacturing, 30(3), 1371–1386.

    Article  Google Scholar 

  11. Lao, S., Choy, K., Ho, G., Yam, R., Tsim, Y., & Poon, T. (2012). Achieving quality assurance functionality in the food industry using a hybrid case-based reasoning and fuzzy logic approach. Expert Systems with Applications, 39(5), 5251–5261.

    Article  Google Scholar 

  12. Holt, A., Bichindaritz, I., Schmidt, R., & Perner, P. (2005). Medical applications in case-based reasoning. The Knowledge Engineering Review, 20(3), 289–292.

    Article  Google Scholar 

  13. Ping, X. O., Tseng, Y. J., Lin, Y. P., Chiu, H. J., Lai, F., Liang, J. D., Huang, G. T., & Yang, P. M. (2015). A multiple measurements case-based reasoning method for predicting recurrent status of liver cancer patients. Computers in Industry, 69, 12–21.

    Article  Google Scholar 

  14. Wang, W. M., Cheung, C. F., Lee, W. B., & Kwok, S. K. (2007). Knowledge-based treatment planning for adolescent early intervention of mental healthcare: A hybrid case-based reasoning approach. Expert Systems, 24(4), 232–251.

    Article  Google Scholar 

  15. Petrovic, S., Khussainova, G., & Jagannathan, R. (2016). Knowledge-light adaptation approaches in case-based reasoning for radiotherapy treatment planning. Artificial Intelligence in Medicine, 68, 17–28.

    Article  Google Scholar 

  16. Choy, K. L. T., Siu, K. Y. P., Ho, T. S. G., Wu, C. H., Lam, H. Y., Tang, V., & Tsang, Y. P. (2018). An intelligent case-based knowledge management system for quality improvement in nursing homes. VINE Journal of Information and Knowledge Management Systems., 48(1), 103–121.

    Article  Google Scholar 

  17. Spata, M. O., & Rinaudo, S. (2010). Merging nash equilibrium solution with genetic algorithm: The game genetic algorithm. Journal Of Convergence Information Technology, 5(9), 9–15.

    Article  Google Scholar 

  18. Adewole, A. P., Otubamowo, K., & Egunjobi, T. O. (2012). A comparative study of simulated annealing and genetic algorithm for solving the travelling salesman problem. International Journal Of Applied Information Systems, 4(4), 6–12.

    Article  Google Scholar 

  19. Marrouchi, S., & Saber, S. B. (2014). A comparative study of fuzzy logic, genetic algorithm, and gradient-genetic algorithm optimization methods for solving the unit commitment problem. Mathematical Problems In Engineering, 2014, 1–14.

    Article  Google Scholar 

  20. Lu, W. (2014). Parameters of network traffic prediction model jointly optimised by genetic algorithm. Journal Of Networks, 9(3).

    Google Scholar 

  21. Geethamani, G. (2016). Analysis of genetic crossover techniques based on roulette wheel selection algorithm and steady state selection algorithm. International Journal Of Engineering And Computer Science, 5(1), 15428–15431.

    Google Scholar 

  22. Sindhwani, N., & Singh, M. (2014). Comparison of adaptive mutation genetic algorithm and genetic algorithm for transmit antenna subset selection in MIMO- OFDM. International Journal Of Computer Applications, 97(22), 22–28.

    Article  Google Scholar 

  23. Peral, J., & Ferrandez, A. (2003). Translation of pronominal anaphora between English and spanish: Discrepancies and evaluation. Journal of Artificial Intelligence Research, 18, 117–147.

    Article  MATH  Google Scholar 

  24. Hertz, A., & Lahrichi, N. (2009). A patient assignment algorithm for home care services. Journal of the Operational Research Society, 60(4), 481–495.

    Article  MATH  Google Scholar 

  25. Bekker, R., Moeke, D., Dieleman, N., Buitink, M., den Uijl, J., Otsen, F., Koreman, K., Passial, R., & Couwenberg, M. (2019). Demand-driven task-scheduling in a nursing home setting: a genetic algorithm approach. Available at SSRN 3367017.

    Google Scholar 

  26. Anbarasi, M., Anupriya, E., & Iyengar, N. C. S. N. (2010). Enhanced prediction of heart disease with feature subset selection using genetic algorithm. International Journal of Engineering Science and Technology, 2(10), 5370–5376.

    Google Scholar 

  27. Ye, F. (2018). Evolving the SVM model based on a hybrid method using swarm optimisation techniques in combination with a genetic algorithm for medical diagnosis. Multimedia Tools and Applications, 77(3), 3889–3918.

    Article  Google Scholar 

  28. Ishizaka, A., & Nemery, P. (2013). Analytic hierarchy process. Chichester, UK. https://doi.org/10.1002/9781118644898.ch2.

    Article  Google Scholar 

  29. Sabharwall, P., Kim, E. S., & Patterson, M. (2012). Evaluation methodology for advance heat exchanger concepts using analytical hierarchy process. Nuclear Engineering and Design, 248, 108–116.

    Article  Google Scholar 

  30. Özdağoğlu, A., & Özdağoğlu, G. (2007). Comparison of AHP and fuzzy AHP for the multi-criteria decision making processes with linguistic evaluations, 65–85.

    Google Scholar 

  31. Ho, W., He, T., Lee, C. K. M., & Emrouznejad, A. (2012). Strategic logistics outsourcing: An integrated QFD and fuzzy AHP approach. Expert Systems with Applications, 39(12), 10841–10850.

    Article  Google Scholar 

  32. Jovanović, B., & Delibašić, B. (2014). Application of integrated QFD and fuzzy AHP approach in selection of suppliers. Management, 19(72), 25–35.

    Google Scholar 

  33. Azam, M., Qureshi, M. R. N. M., & Talib, F. (2017). Quality evaluation of health care establishment utilising fuzzy AHP. International Journal of Service Science, Management, Engineering, and Technology (IJSSMET), 8(4), 83–120.

    Google Scholar 

  34. Singh, A., & Prasher, A. (2019). Measuring healthcare service quality from patients’ perspective: Using Fuzzy AHP application. Total Quality Management & Business Excellence, 30(3–4), 284–300.

    Article  Google Scholar 

  35. Han, J., Pei, J., & Kamber, M. (2011). Data mining: Concepts and techniques. Elsevier.

    MATH  Google Scholar 

  36. Brown, M. (2012). Data mining techniques. Developer Works, IBM Corporation, December, 11, 1–16.

    Google Scholar 

  37. Koh, H. C., & Tan, G. (2011). Data mining applications in healthcare. Journal of Healthcare Information Management, 19(2), 65.

    Google Scholar 

  38. Obenshain, M. K. (2004). Application of data mining techniques to healthcare data. Infection Control & Hospital Epidemiology, 25(8), 690–695.

    Article  Google Scholar 

  39. Srinivas, K., Rani, B. K., & Govrdhan, A. (2010). Applications of data mining techniques in healthcare and prediction of heart attacks. International Journal on Computer Science and Engineering (IJCSE), 2(02), 250–255.

    Google Scholar 

  40. Candelieri, A., Dolce, G., Riganello, F., & Sannita, W. G. (2011). Data mining in neurology. In Knowledge-Oriented Applications in Data Mining. InTech.

    Google Scholar 

  41. Bushinak, H., AbdelGaber, S., & AlSharif, F. K. (2011). Recognising the electronic medical record data from unstructured medical data using visual text mining techniques. International Journal of Computer Science and Information Security, 9(6), 25.

    Google Scholar 

  42. Milovic, B. (2012). Prediction and decision making in health care using data mining. Kuwait Chapter of Arabian Journal of Business and Management Review, 1(12), 126–136.

    Google Scholar 

  43. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31, 651–666.

    Article  Google Scholar 

  44. Belciug, S., Salem, A. B., Gorunescu, F., & Gorunescu, M. (2010). Clustering-based approach for detecting breast cancer recurrence. In Intelligent Systems Design and Applications (ISDA), 2010 10th International Conference on (pp. 533–538). IEEE.

    Google Scholar 

  45. Escudero, J., Zajicek, J. P., & Ifeachor, E. (2011). Early detection and characterisation of Alzheimer's disease in clinical scenarios using Bioprofile concepts and K-means. In Engineering in Medicine and Biology Society, EMBC, 2011 Annual International Conference of the IEEE (pp. 6470–6473). IEEE.

    Google Scholar 

  46. Balasubramanian, T., & Umarani, R. (2012). An analysis on the impact of fluoride in human health (dental) using clustering data mining technique. In Pattern Recognition, Informatics and Medical Engineering (PRIME), 2012 International Conference on (pp. 370–375). IEEE.

    Google Scholar 

  47. Vithyaa, T., & Manivannan, K. (2016). Performance analysis of healthcare application using parallel k-means clustering algorithm. Advances in Natural and Applied Sciences, 10(4), 57–64.

    Google Scholar 

  48. Tomar, D., & Agarwal, S. (2013). A survey on Data Mining approaches for healthcare. International Journal of Bio-Science and Bio-Technology, 5(5), 241–266.

    Article  Google Scholar 

  49. Theodoridis, S., & Koutroumbas, K. (2006). Clustering: Basic concepts. Pattern Recognition, 483–516.

    Google Scholar 

  50. Preece, S. J., Goulermas, J. Y., Kenney, L. P., Howard, D., Meijer, K., & Crompton, R. (2009). Activity identification using body-mounted sensors—a review of classification techniques. Physiological Measurement, 30(4), R1.

    Article  Google Scholar 

  51. Khan, F. S., Anwer, R. M., Torgersson, O., & Falkman, G. (2008). Data mining in oral medicine using decision trees. World Academy of Science, Engineering and Technology, 37, 225–230.

    Google Scholar 

  52. Şahan, S., Polat, K., Kodaz, H., & Güneş, S. (2007). A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. Computers in Biology and Medicine, 37(3), 415–423.

    Article  Google Scholar 

  53. Anunciaçao, O., Gomes, B. C., Vinga, S., Gaspar, J., Oliveira, A. L., & Rueff, J. (2010). a data mining approach for the detection of high-risk breast cancer groups. In IWPACBB (pp. 43–51).

    Google Scholar 

  54. Pawlovsky, A. P., & Matsuhashi, H. (2017). The use of a novel genetic algorithm in component selection for a kNN method for breast cancer prognosis. In 2017 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE) (pp. 1–5). IEEE.

    Google Scholar 

  55. Gunawan, A. A. N., Poniman, S., & Supardi, I. W. (2019). Classification of breast cancer grades using physical parameters and K-nearest neighbor method. Telkomnika, 17(2), 637–644.

    Article  Google Scholar 

  56. Lee, S. D., & Cheung, D. (2002). Maintenance of discovered association rules. In Knowledge Discovery for Business Information Systems (pp. 173–209). Springer, Boston, MA.

    Google Scholar 

  57. Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In ACM Sigmod Record, 22(2), 207–216.

    Article  Google Scholar 

  58. Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J. F., & Hua, L. (2012). Data mining in healthcare and biomedicine: A survey of the literature. Journal of Medical Systems, 36(4), 2431–2448.

    Article  Google Scholar 

  59. Yu, W., Wang, X., Wang, F., Wang, E., & Chen, B. (2008). Notice of Retraction The research of improved apriori algorithm for mining association rules. In Communication Technology, 2008. ICCT 2008. 11th IEEE International Conference on (pp. 513–516). IEEE.

    Google Scholar 

  60. Kuok, C. M., Fu, A., & Wong, M. H. (1998). Mining fuzzy association rules in databases. ACM Sigmod Record, 27(1), 41–46.

    Article  Google Scholar 

  61. Karabatak, M., & Ince, M. C. (2009). An expert system for detection of breast cancer based on association rules and neural network. Expert systems with Applications, 36(2), 3465–3469.

    Article  Google Scholar 

  62. Abdi, M. J., & Giveki, D. (2013). Automatic detection of erythemato-squamous diseases using PSO–SVM based on association rules. Engineering Applications of Artificial Intelligence, 26(1), 603–608.

    Article  Google Scholar 

  63. Shih, W. F., Lin, C. W., Wang, W. F., & Wu, H. H. (2018). Association rule mining of care targets from hospitalised dementia patients from a medical center in Taiwan. Journal of Statistics and Management Systems, 21(7), 1299–1310.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

WU, C.H., LAM, C.H.Y., XHAFA, F., TANG, V., IP, W.H. (2022). Artificial Intelligence and Data Mining Techniques for the Well-Being of Elderly. In: Wu, C., Lam, C.H., Xhafa, F., Tang, V., Ip, W. (eds) IoT for Elderly, Aging and eHealth. Lecture Notes on Data Engineering and Communications Technologies, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-93387-6_6

Download citation

Publish with us

Policies and ethics