Skip to main content

A Numerical Case Study on the Thermal Runaway of a Lithium-Ion EV Battery Module

  • Conference paper
  • First Online:
Present Approach to Traffic Flow Theory and Research in Civil and Transportation Engineering (TSTP 2021)

Abstract

Lithium-ion batteries are nowadays the main energy source for electric vehicles. Although the general principle of their operation remains unchanged for dozen of years, manufacturers try to achieve as much as possible energy density, hence many improvements have been introduced. On the other side, lithium-ion batteries are prone to failures, which may lead to a chain reaction in the whole battery module. Since the energetic outcome of such event can pose a serious threat to people, the data on the rate of the chain reaction development is important due to safety issues. Hence, the paper presents a detailed numerical study on thermal runaway in battery modules. Reactions in a single cell were modeled in accordance to up to date knowledge and then the propagation of the failure through a battery module was analyzed. The results showed the reaction might develop in a latent manner and culminate violently after a long time period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poizot, P., Dolhem, F.: Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4(6), 2003–2009 (2011). https://doi.org/10.1039/C0EE00731E

  2. Aziz, M., Oda, T., Kashiwagi, T.: Extended utilization of electric vehicles and their re-used batteries to support the building energy management system. Energy Procedia 75, 1938–1943 (2015). https://doi.org/10.1016/j.egypro.2015.07.226

  3. Yuan, X., Li, L., Gou, H., Dong, T.: Energy and environmental impact of battery electric vehicle range in China. Appl. Energy 157(1), 75–84 (2015). https://doi.org/10.1016/j.apenergy.2015.08.001

  4. Wang, Q., Ping, P., Zhao, X., Jinhu, G.C., Chen, S.C.: Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sour. 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038

  5. Xia, L., Miao, H., Zhang, C., Chen, G.Z., Yuan, J.: Review-recent advances in non-aqueous liquid electrolytes containing fluorinated compounds for high energy density lithium-ion batteries. Energy Storage Mater. 38, 542–570 (2021). https://doi.org/10.1016/j.ensm.2021.03.032

  6. Zhang, L., et al.: Experimental study on the synergistic effect of gas extinguishing agents and water mist on suppressing lithium-ion battery fires. J. Energy Storage 32, 101801 (2020). https://doi.org/10.1016/j.est.2020.101801

  7. Broussely, M., et al.: Main aging mechanisms in Li ion batteries. J. Power Sour. 146(1–2), 90–96 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.172

  8. Love, C.T., Baturina, O.A., Swider-Lyons, K.E.: Observation of lithium dendrites at ambient temperature and below. ECS Electrochem. Lett. 4(2), 24–27 (2015). https://doi.org/10.1149/2.0041502eel

  9. Liu, B., et al.: Safety issues caused by internal short circuits in lithium ion batteries. J. Mater. Chem. A 43(6), 21475–21484 (2018). https://doi.org/10.1039/C8TA08997C

  10. Spotnitz, R., Franklin, J.: Abuse behavior of high-power, lithium-ion cells. J. Power Sour. 113(1), 81–100 (2003). https://doi.org/10.1016/S0378-7753(02)00488-3

  11. Nishi, Y.: The development of lithium ion secondary batteries. Chem. Rec. 1(5), 406–413 (2001). https://doi.org/10.1002/tcr.1024

  12. Hendricks, C., Williard, N., Mathew, S., Pecht, M.: A failure modes, mechanisms, and effects analysis (FMMEA) of lithium-ion batteries. J. Power Sour. 297(30), 113–120 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.100

  13. Isozumi, H., et al.: Application of modified styrene-butadiene-rubber-based latex binder to high-voltage operating LiCoO2 composite electrodes for lithium-ion batteries. J. Power Sour. 468(31), 228332 (2020). https://doi.org/10.1016/j.jpowsour.2020.228332

  14. Jia, Y., Uddin, M., Li, Y., Xu, J.: Thermal runaway propagation behavior within 18.650 lithium-ion battery packs: a modeling study. J. Energy Storage 31, 101668 (2020). https://doi.org/10.1016/j.est.2020.101668

  15. Zhang, W., Liang, Z., Yin, X., Ling, G.: Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling. Appl. Therm. Eng. 184, 116380 (2021). https://doi.org/10.1016/j.applthermaleng.2020.1116380

  16. Ouyang, D., Weng, J., Hu, J., Chen, M., Huang, Q., Wang, J.: Experimental investigation of thermal failure propagation in typical lithium-ion battery modules. Thermochimica Act 676, 205–213 (2019). https://doi.org/10.1016/j.tca.2019.05.002

  17. Chen, M., Dongxu, O., Liu, J., Wang, J.: Investigation on thermal and fire propagation behaviors of multiple lithium-ion batteries within the package. Appl. Therm. Eng. 157, 113750 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113750

  18. Zhang, L., Zhao, P., Xu, M., Wang, X.: Computational identification of the safety regime of Li-ion battery thermal runaway. Appl. Energy 261, 114440 (2020). https://doi.org/10.1016/j.apenergy.2019.114440

  19. Logan, E.R., et al.: A study of the physical properties of Li-ion battery electrolytes containing esters. J. Electrochem. Soc. 165(2), 21–30 (2018). https://doi.org/10.1149/2.0271802jes

  20. Coman, P.T., Darcy, E.C., Veje, C.T., Whited, R.E.: Modelling Li-ion cell thermal runaway triggered by an internal short circuit device using an efficiency factor and Arrhenius formulations. J. Electrochem. Soc. 164(4), 587–593 (2017). https://doi.org/10.1149/2.0341704jes

  21. Intano, W., Kaewpradap, A., Hirai, S., Masomtob, M.: Thermal investigation of cell arrangements for cylindrical battery with forced air-cooling strategy. J. Res. Appl. Mech. Eng. 8(1), 11–21 (2020). https://doi.org/10.14456/jrame.2020.2

  22. Kong, D., Wang, G., Ping, P., Wen, J.: Numerical investigation of thermal runaway behavior of lithium-ion batteries with different materials and heating conditions. Appl. Therm. Eng. 189, 1116661 (2021). https://doi.org/10.1016/j.appthermaleng.2021.1116661

  23. Huang, Z., et al.: Experimental investigation on thermal runaway propagation of large format lithium ion battery modules with two cathodes. Int. J. Heat Mass Transf. 172, 121077 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121077

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Król .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Król, A., Król, M. (2022). A Numerical Case Study on the Thermal Runaway of a Lithium-Ion EV Battery Module. In: Macioszek, E., Sierpiński, G. (eds) Present Approach to Traffic Flow Theory and Research in Civil and Transportation Engineering. TSTP 2021. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham. https://doi.org/10.1007/978-3-030-93370-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93370-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93369-2

  • Online ISBN: 978-3-030-93370-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics