Skip to main content

Muscular Dystrophy Therapy Using Viral Vector-based CRISPR/Cas

  • Chapter
  • First Online:

Abstract

Duchenne muscular dystrophy (DMD) is a fatal X-linked genetic disorder caused by mutations in the DMD gene, which encodes the dystrophin protein. A lack of dystrophin disrupts the skeletal musculature, resulting in severe muscle degeneration. Currently, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system offers an evolved and precise tool of programmed genomic modification and is being widely studied as a therapeutic tool for treating various genetic diseases. Recently, CRISPR-mediated DMD therapy has been intensively studied as a means of correcting or bypassing disease-causing mutations, resulting in the permanent repair of mutated DMD gene and rescues of dystrophin expression. However, delivery methods remain a major barrier for CRISPR-mediated genome editing. Various viral vectors have been utilized as vehicles for sequences encoding CRISPR/Cas components. Efforts have been made to optimize the viral vector systems for efficient delivery of these components to treat DMD. Herein, we review diverse aspects of several viral vectors combined with CRISPR/Cas systems for DMD therapy and discuss their therapeutic potential and the challenges ahead.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Neri, M., Torelli, S., Brown, S., Ugo, I., Sabatelli, P., Merlini, L., Spitali, P., Rimessi, P., Gualandi, F., Sewry, C., Ferlini, A., & Muntoni, F. (2007). Dystrophin levels as low as 30% are sufficient to avoid muscular dystrophy in the human. Neuromuscular Disorders, 17, 913–918. https://doi.org/10.1016/j.nmd.2007.07.005

    Article  PubMed  Google Scholar 

  2. Beggs, A. H., Hoffman, E. P., Snyder, J. R., Arahata, K., Specht, L., Shapiro, F., Angelini, C., Sugita, H., & Kunkel, L. M. (1991). Exploring the molecular basis for variability among patients with Becker muscular dystrophy: Dystrophin gene and protein studies. American Journal of Human Genetics, 49, 54–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lim, K. R. Q., Maruyama, R., & Yokota, T. (2017). Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Design, Development and Therapy, 11, 533–545. https://doi.org/10.2147/DDDT.S97635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heo, Y. A. (2020). Golodirsen: First approval. Drugs, 80, 329–333. https://doi.org/10.1007/s40265-020-01267-2

    Article  PubMed  Google Scholar 

  5. Roshmi, R. R., & Yokota, T. (2021). Pharmacological Profile of viltolarsen for the treatment of duchenne muscular dystrophy: A Japanese experience. Clinical Pharmacology: Advances and Applications, 13, 235–242. https://doi.org/10.2147/CPAA.S288842

  6. Mendell, J. R., Campbell, K., Rodino-Klapac, L., Sahenk, Z., Shilling, C., Lewis, S., Bowles, D., Gray, S., Li, C., Galloway, G., Malik, V., Coley, B., Clark, K. R., Li, J., Xiao, X., Samulski, J., McPhee, S. W., Samulski, R. J., & Walker, C. M. (2010). Dystrophin immunity in Duchenne’s muscular dystrophy. The New England Journal of Medicine, 363, 1429–1437. https://doi.org/10.1056/nejmoa1000228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, Y. G., Cha, J., & Chandrasegaran, S. (1996). Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences of the United States of America, 93, 1156–1160. https://doi.org/10.1073/pnas.93.3.1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smith, J., Grizot, S., Arnould, S., Duclert, A., Epinat, J. C., Chames, P., Prieto, J., Redondo, P., Blanco, F. J., Bravo, J., Montoya, G., Pâques, F., & Duchateau, P. (2006). A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research, 34, e149. https://doi.org/10.1093/nar/gkl720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., & Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512. https://doi.org/10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  10. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., Volz, S. E., Joung, J., Van Der Oost, J., Regev, A., Koonin, E. V., & Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ran, F. A., Cong, L., Yan, W. X., Scott, D. A., Gootenberg, J. S., Kriz, A. J., Zetsche, B., Shalem, O., Wu, X., Makarova, K. S., Koonin, E. V., Sharp, P. A., & Zhang, F. (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520, 186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, E., Koo, T., Park, S. W., Kim, D., Kim, K., Cho, H. Y., Song, D. W., Lee, K. J., Jung, M. H., Kim, S., Kim, J. H., Kim, J. H., & Kim, J. S. (2017). In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nature Communications, 8, 14500. https://doi.org/10.1038/ncomms14500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533, 420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 551, 464–471. https://doi.org/10.1038/nature24644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurt, I. C., Zhou, R., Iyer, S., Garcia, S. P., Miller, B. R., Langner, L. M., Grünewald, J., & Joung, J. K. (2021). CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nature Biotechnology, 39, 41–46. https://doi.org/10.1038/s41587-020-0609-x

    Article  CAS  PubMed  Google Scholar 

  17. Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576, 149–157. https://doi.org/10.1038/s41586-019-1711-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kole, R., & Krieg, A. M. (2015). Exon skipping therapy for Duchenne muscular dystrophy. Advanced Drug Delivery Reviews, 87, 104–107. https://doi.org/10.1016/j.addr.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  19. Min, Y. L., Li, H., Rodriguez-Caycedo, C., Mireault, A. A., Huang, J., Shelton, J. M., McAnally, J. R., Amoasii, L., Mammen, P. P. A., Bassel-Duby, R., & Olson, E. N. (2019). CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Sci Adv, 5, eaav4324. https://doi.org/10.1126/sciadv.aav4324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Amoasii, L., Long, C., Li, H., Mireault, A. A., Shelton, J. M., Sanchez-Ortiz, E., McAnally, J. R., Bhattacharyya, S., Schmidt, F., Grimm, D., Hauschka, S. D., Bassel-Duby, R., & Olson, E. N. (2017). Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med, 9, eaan8081. https://doi.org/10.1126/scitranslmed.aan8081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Amoasii, L., Hildyard, J. C. W., Li, H., Sanchez-Ortiz, E., Mireault, A., Caballero, D., Harron, R., Stathopoulou, T. R., Massey, C., Shelton, J. M., Bassel-Duby, R., Piercy, R. J., & Olson, E. N. (2018). Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science, 362, 86–91. https://doi.org/10.1126/science.aau1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liao, H. K., Hatanaka, F., Araoka, T., Reddy, P., Wu, M. Z., Sui, Y., Yamauchi, T., Sakurai, M., O’Keefe, D. D., Núñez-Delicado, E., Guillen, P., Campistol, J. M., Wu, C. J., Lu, L. F., Esteban, C. R., & Izpisua Belmonte, J. C. (2017). In vivo target gene activation via CRISPR/Cas9-mediated trans-epigenetic modulation. Cell, 171, 1495–1507. https://doi.org/10.1016/j.cell.2017.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Himeda, C. L., Jones, T. I., & Jones, P. L. (2016). CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Molecular Therapy, 24, 527–535. https://doi.org/10.1038/mt.2015.200

    Article  CAS  PubMed  Google Scholar 

  24. Nelson, C. E., Wu, Y., Gemberling, M. P., Oliver, M. L., Waller, M. A., Bohning, J. D., Robinson-Hamm, J. N., Bulaklak, K., Castellanos Rivera, R. M., Collier, J. H., Asokan, A., & Gersbach, C. A. (2019). Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nature Medicine, 25, 427–432. https://doi.org/10.1038/s41591-019-0344-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu, L., Lau, Y. S., Gao, Y., Li, H., & Han, R. (2019). Life-long AAV-mediated CRISPR genome editing in dystrophic heart Improves cardiomyopathy without causing serious lesions in mdx mice. Molecular Therapy, 27, 1407–1414. https://doi.org/10.1016/j.ymthe.2019.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zincarelli, C., Soltys, S., Rengo, G., & Rabinowitz, J. E. (2008). Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection. Molecular Therapy, 16, 1073–1080. https://doi.org/10.1038/mt.2008.76

    Article  CAS  PubMed  Google Scholar 

  27. Koo, T., Lu-Nguyen, N. B., Malerba, A., Kim, E., Kim, D., Cappellari, O., Cho, H. Y., Dickson, G., Popplewell, L., & Kim, J. S. (2018). Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using Campylobacter jejuni Cas9. Molecular Therapy, 26, 1529–1538. https://doi.org/10.1016/j.ymthe.2018.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tabebordbar, M., Zhu, K., Cheng, J. K. W., Chew, W. L., Widrick, J. J., Yan, W. X., Maesner, C., Wu, E. Y., Xiao, R., Ran, F. A., Cong, L., Zhang, F., Vandenberghe, L. H., Church, G. M., & Wagers, A. J. (2016). In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 351, 407–411. https://doi.org/10.1126/science.aad5177

    Article  CAS  PubMed  Google Scholar 

  29. Long, C., Amoasii, L., Mireault, A. A., McAnally, J. R., Li, H., Sanchez-Ortiz, E., Bhattacharyya, S., Shelton, J. M., Bassel-Duby, R., & Olson, E. N. (2016). Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 351, 400–403. https://doi.org/10.1126/science.aad5725

    Article  CAS  PubMed  Google Scholar 

  30. Ryu, S. M., Koo, T., Kim, K., Lim, K., Baek, G., Kim, S. T., Kim, H. S., Kim, D. E., Lee, H., Chung, E., & Kim, J. S. (2018). Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nature Biotechnology, 36, 536–539. https://doi.org/10.1038/nbt.4148

    Article  CAS  PubMed  Google Scholar 

  31. Mills, K. V., Johnson, M. A., & Perler, F. B. (2014). Protein splicing: How inteins escape from precursor proteins. The Journal of Biological Chemistry, 289, 14498–14505. https://doi.org/10.1074/jbc.R113.540310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moretti, A., Fonteyne, L., Giesert, F., Hoppmann, P., Meier, A. B., Bozoglu, T., et al. (2020). Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nature Medicine, 26, 207–214. https://doi.org/10.1038/s41591-019-0738-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maggio, I., Holkers, M., Liu, J., Janssen, J. M., Chen, X., & Gonçalves, M. A. F. V. (2014). Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Scientific Reports, 4, 5105. https://doi.org/10.1038/srep05105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Volpers, C., & Kochanek, S. (2004). Adenoviral vectors for gene transfer and therapy. The Journal of Gene Medicine, 6(S164), S171. https://doi.org/10.1002/jgm.496

    Article  CAS  Google Scholar 

  35. Shirley, J. L., de Jong, Y. P., Terhorst, C., & Herzog, R. W. (2020). Immune responses to viral gene therapy vectors. Molecular Therapy, 28, 709–722. https://doi.org/10.1016/j.ymthe.2020.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu, L., Park, K. H., Zhao, L., Xu, J., El Refaey, M., Gao, Y., Zhu, H., Ma, J., & Han, R. (2016). CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Molecular Therapy, 24, 564–569. https://doi.org/10.1038/mt.2015.192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Maggio, I., Liu, J., Janssen, J. M., Chen, X., & Gonçalves, M. A. F. V. (2016). Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells. Scientific Reports, 6, 37051. https://doi.org/10.1038/srep37051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Maggio, I., Stefanucci, L., Janssen, J. M., Liu, J., Chen, X., Mouly, V., & Gonçalves, M. A. F. V. (2016). Selection-free gene repair after adenoviral vector transduction of designer nucleases: Rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Research, 44, 1449–1470. https://doi.org/10.1093/nar/gkv1540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mück-Häusl, M., Solanki, M., Zhang, W., Ruzsics, Z., & Ehrhardt, A. (2015). Ad 2.0: A novel recombineering platform for high-throughput generation of tailored adenoviruses. Nucleic Acids Res, 43, e50. https://doi.org/10.1093/nar/gkv031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ehrke-Schulz, E., Schiwon, M., Leitner, T., Dávid, S., Bergmann, T., Liu, J., & Ehrhardt, A. (2017). CRISPR/Cas9 delivery with one single adenoviral vector devoid of all viral genes. Scientific Reports, 7, 17113. https://doi.org/10.1038/s41598-017-17180-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ehrhardt, A., & Kay, M. A. (2002). A new aadnoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo. Blood, 99, 3923–3930. https://doi.org/10.1182/blood.V99.11.3923

    Article  CAS  PubMed  Google Scholar 

  42. Brescia, M., Janssen, J. M., Liu, J., & Gonçalves, M. A. F. V. (2020). High-capacity adenoviral vectors permit robust and versatile testing of DMD gene repair tools and strategies in human cells. Cell, 9, 869. https://doi.org/10.3390/cells9040869

    Article  CAS  Google Scholar 

  43. Sarkis, C., Philippe, S., Mallet, J., & Serguera, C. (2008). Non-integrating lentiviral vectors. Current Gene Therapy, 8, 430–437. https://doi.org/10.2174/156652308786848012

    Article  CAS  PubMed  Google Scholar 

  44. Jin, Y., Shen, Y., Su, X., Weintraub, N., & Tang, Y. (2019). CRISPR/Cas9 technology in restoring dystrophin expression in iPSC-derived muscle progenitors. Journal of Visualized Experiments, 151, e59432. https://doi.org/10.3791/59432

    Article  CAS  Google Scholar 

  45. Duchêne, B. L., Cherif, K., Iyombe-Engembe, J. P., Guyon, A., Rousseau, J., Ouellet, D. L., Barbeau, X., Lague, P., & Tremblay, J. P. (2018). CRISPR-induced deletion with SaCas9 restores dystrophin expression in dystrophic models in vitro and in vivo. Molecular Therapy, 26, 2604–2616. https://doi.org/10.1016/j.ymthe.2018.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lattanzi, A., Moiani, A., Izmiryan, A., Martin, S., Mavilio, F., Bovolenta, M., Duguez, S., Mamchaoui, K., Mouly, V., Barbon, E., & Bernardi, F. (2017). Correction of the exon 2 duplication in DMD myoblasts by a single CRISPR/Cas9 system. Molecular Therapy Nucleic Acids, 7, 11–19. https://doi.org/10.1016/j.omtn.2017.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wojtal, D., Kemaladewi, D. U., Malam, Z., Abdullah, S., Wong, T. W. Y., Hyatt, E., Baghestani, Z., Pereira, S., Stavropoulos, J., Mouly, V., Mamchaoui, K., Muntoni, F., Voit, T., Gonorazky, H. D., Dowling, J. J., Wilson, M. D., Mendoza-Londono, R., Ivakine, E. A., & Cohn, R. D. (2016). Spell checking nature: Versatility of CRISPR/Cas9 for developing treatments for inherited disorders. American Journal of Human Genetics, 98, 90–101. https://doi.org/10.1016/j.ajhg.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  48. Wienert, B., Wyman, S. K., Richardson, C. D., Yeh, C. D., Akcakaya, P., Porritt, M. J., Morlock, M., Vu, J. T., Kazane, K. R., Watry, H. L., Judge, L. M., Conklin, B. R., Maresca, M., & Corn, J. E. (2019). Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science, 364, 286–289. https://doi.org/10.1126/science.aav9023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jo, D. H., Koo, T., Cho, C. S., Kim, J. H., Kim, J. S., & Kim, J. H. (2019). Long-term effects of in vivo genome editing in the mouse retina using Campylobacter jejuni Cas9 expressed via adeno-associated virus. Molecular Therapy, 27, 130–136. https://doi.org/10.1016/j.ymthe.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  50. Rayner, E., Durin, M.-A., Thomas, R., Moralli, D., O’Cathail, S. M., Tomlinson, I., Green, C. M., & Lewis, A. (2019). CRISPR-Cas9 causes chromosomal instability and rearrangements in cancer cell lines, detectable by cytogenetic methods. CRISPR Journal, 2, 406–416. https://doi.org/10.1089/crispr.2019.0006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Senturk, S., Shirole, N. H., Nowak, D. G., Corbo, V., Pal, D., Vaughan, A., Tuveson, D. A., Trotman, L. C., Kinney, J. B., & Sordella, R. (2017). Rapid and tunable method to temporally control gene editing based on conditional Cas9 stabilization. Nature Communications, 8, 14370. https://doi.org/10.1038/ncomms14370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dow, L. E., Fisher, J., O’Rourke, K. P., Muley, A., Kastenhuber, E. R., Livshits, G., Tschaharganeh, D. F., Socci, N. D., & Lowe, S. W. (2015). Inducible in vivo genome editing with CRISPR-Cas9. Nature Biotechnology, 33, 390–394. https://doi.org/10.1038/nbt.3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Harrington, L. B., Doxzen, K. W., Ma, E., Liu, J. J., Knott, G. J., Edraki, A., Garcia, B., Amrani, N., Chen, J. S., Cofsky, J. C., Kranzusch, P. J., Sontheimer, E. J., Davidson, A. R., Maxwell, K. L., & Doudna, J. A. (2017). A broad-spectrum inhibitor of CRISPR-Cas9. Cell, 170, 1224–1233. https://doi.org/10.1016/j.cell.2017.07.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, A., Lee, C. M., Hurley, A. E., Jarrett, K. E., De Giorgi, M., Lu, W., Balderrama, K. S., Doerfler, A. M., Deshmukh, H., Ray, A., Bao, G., & Lagor, W. R. (2019). A self-deleting AAV-CRISPR system for in vivo genome editing. Molecular Therapy – Methods and Clinical Development, 12, 111–122. https://doi.org/10.1016/j.omtm.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  55. Yin, H., Song, C. Q., Dorkin, J. R., Zhu, L. J., Li, Y., Wu, Q., et al. (2016). Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nature Biotechnology, 34, 328–333. https://doi.org/10.1038/nbt.3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martino, A. T., & Markusic, D. M. (2020). Immune response mechanisms against AAV vectors in animal models. Molecular Therapy – Methods and Clinical Development, 17, 198–208. https://doi.org/10.1016/j.omtm.2019.12.008

    Article  CAS  PubMed  Google Scholar 

  57. Kim, S., Koo, T., Jee, H. G., Cho, H. Y., Lee, G., Lim, D. G., Shin, H. S., & Kim, J. S. (2018). CRISPR RNAs trigger innate immune responses in human cells. Genome Research, 28, 367–373. https://doi.org/10.1101/gr.231936.117

    Article  CAS  PubMed Central  Google Scholar 

  58. Charlesworth, C. T., Deshpande, P. S., Dever, D. P., Camarena, J., Lemgart, V. T., Cromer, M. K., Vakulskas, C. A., Collingwood, M. A., Zhang, L., Bode, N. M., Behlke, M. A., Dejene, B., Cieniewicz, B., Romano, R., Lesch, B. J., Gomez-Ospina, N., Mantri, S., Pavel-Dinu, M., Weinberg, K. I., & Porteus, M. H. (2019). Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nature Medicine, 25, 249–254. https://doi.org/10.1038/s41591-018-0326-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ferdosi, S. R., Ewaisha, R., Moghadam, F., Krishna, S., Park, J. G., Ebrahimkhani, M. R., Kiani, S., Anderson, K. S. (2019) Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nature Communications 10(1), https://doi.org/10.1038/s41467-019-09693-x

  60. Wagner, D. L., Amini, L., Wendering, D. J., Burkhardt, L. M., Akyüz, L., Reinke, P., Volk, H. D., & Schmueck-Henneresse, M. (2019). High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nature Medicine, 25, 242–248. https://doi.org/10.1038/s41591-018-0204-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Research Foundation of Korea grant funded by the Korea government [2022R1A2C1013352 and 2020R1A4A1016142].

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taeyoung Koo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choi, E., Koo, T. (2022). Muscular Dystrophy Therapy Using Viral Vector-based CRISPR/Cas. In: Yun, Y.H., Yoder, K.E. (eds) Biotechnologies for Gene Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-93333-3_4

Download citation

Publish with us

Policies and ethics