Skip to main content

Plant Molecular Farming: A Marvelous Biotechnological Approach in Agricultural Production

  • Chapter
  • First Online:
Agriculture, Livestock Production and Aquaculture

Abstract

Plants have several advantages over the system for strategic production of useful biomolecules and proteins. Plant molecular farming is the genetic manipulations of the plants for production of desirable proteins and other useful biomolecules through various biotechnological approaches. Moreover, plants have been recognized as potential and natural sources of pharmaceutical products including various types of biomolecules including vaccines, proteins, antibodies, therapeutic entities, and essential blood substitutes. In addition, mammalian-derived recombinant DNA drugs, plant-derived antibodies, edible vaccines, and useful proteins are advantageous and are free of mammalian viral vector as well as other pathogens related to human. Plant-made biopharmaceuticals are safer, cheaper, can be commercially produced, and easily stored. In this article, we have described several plant diverse systems for the commercial production of useful proteins, enzymes, antibodies, and vaccines with desirable traits. Several advantages as well as disadvantages of the particular system of the plant molecular farming are also discussed. We have also described the product of plant molecular farming currently available in the market on commercial basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A Hiatt , R Cafferkey, K Bowdish (1989). Production of antibodies in transgenic plants. Nature. (2): 342 (6245): 76–8.

    Google Scholar 

  • Andrea Barta, Karin Sommergruber, Diana Thompson, Klaus Hartmuth, Marjori A. Matzke & Antionius J. M. Matzke (1986). The expression of a nopaline synthase — human growth hormone chimaeric gene in transformed tobacco and sunflower callus tissue. Plant Molecular Biology. (6): 347–357.

    Article  CAS  Google Scholar 

  • C O Tacket , H S Mason, G Losonsky, J D Clements, M Levine, C J Arntzen (1998a). Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato. Nat Med. (5):607–9.

    Article  Google Scholar 

  • Chong, D.K.X. and Langridge, W.H.R. (2000) Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res. 9, 71–78

    Article  CAS  Google Scholar 

  • Commandeur, U. et al. (2003) The biosafety of molecular farming in plants. AgBiotechNet 5, 110.

    Google Scholar 

  • De Wilde, C. et al. (2002) Expression of antibodies and Fab fragments in transgenic potato plants: a case study for bulk production in crop plants. Mol. Breed. 9, 2871–2882.

    Article  Google Scholar 

  • Drake P.M., Barbi T., Sexton A., Mcgowan E., Stadlmann J., Navarre C., Ma J.K.C. (2009). Development of rhizosecretion as a production system for recombinant proteins from hydroponic cultivated tobacco. The FASEB Journal. (23): 3581–3589.

    Article  CAS  Google Scholar 

  • Elizabeth E. Hood, Derrick R. Witcher, Sheila Maddock, Terry Meyer, Chris Baszczynski, Michele Bailey, Pam Flynn, James Register, Lisa Marshall, Diane Bond, Ellen Kulisek, Ann Kusnadi, Roque Evangelista, Zivko Nikolov, Cynthia Wooge, Richard J. Mehigh, Ronald Hernan, William K. Kappel, David Ritland, Chun Ping Li & John A. Howard (1997). Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Molecular Breeding. (3): 291–306.

    Article  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffman NL, Woo SC (1983). Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA (80):4803–4807.

    Google Scholar 

  • Franken E, Teuschel U and Hain (1997). R Recombinant proteins from transgenic plants. Curr Opin Biotech. (8): 411–416.

    Article  CAS  Google Scholar 

  • Giddings, G. (2001) Transgenic plants as protein factories. Curr. Opin. Biotechnol. 12, 450–454.

    Article  CAS  Google Scholar 

  • Henry Daniell,Choun-Sea Lin, Ming Yu, and Wan-Jung Chang (2016). Chloroplast genomes: diversity, evolution and applications in genetic engineering. Genome Biol. (17):34.

    Article  Google Scholar 

  • Hood, E.E. (2002) From green plants to industrial enzymes. Enzyme & Microbial Technol 30, 279–283.

    Article  CAS  Google Scholar 

  • Horn ME, Woodard SL and Howard JA (2004). Plant molecular farming: systems and products. Plant Cell Rep. (22): 711–720.

    Article  CAS  Google Scholar 

  • Houdebine L.M., Attal J. (1999). Internal ribosome entry sites (IRESs): reality and use. Transgenic Research. (8): 157–177.

    Article  CAS  Google Scholar 

  • J Pen , L Molendijk, W J Quax, P C Sijmons, A J van Ooyen, P J van den Elzen, K Rietveld, A Hoekema (1992). Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Biotechnology (N Y). 10 (3):292–6.

    CAS  Google Scholar 

  • Jeffrey M. Staub, Bradley Garcia, Julie Graves, Peter T. J. Hajdukiewicz, Priscilla Hunter, Narender Nehra, Vikram Paradkar, Michael Schlittler, James A. Carroll, Lori Spatola, Dannette Ward, Guangning Ye, and Douglas A. Russell (2000). High-yield production of a human therapeutic protein in tobacco chloroplasts. Nature America Inc. (18): 333–338.

    Google Scholar 

  • Kamenarova, K., Abumhadi, N., Gecheff, K. and Atanassov, A (2005). Molecular farming in plants: an approach of agricultural biotechnology. Journal of cell and molecular biology. (4):77–86.

    Google Scholar 

  • Lamphear BJ, Jilka JM, Kesl L, Welter M, Howard JA, Streatfield SJ (2004). A corn-based delivery system for animal vaccines: an oral transmissable gastroenteritis virus vaccine boosts lactogenic immunity in swine. Vaccine.

    Google Scholar 

  • Ma J.K.C A Hiatt, M Hein, N D Vine, F Wang, P Stabila, C van Dolleweerd, K Mostov, T Lehner (1995). Generation and assembly of secretory antibodies in plants. Science. (5): 268(5211):716–9.

    Google Scholar 

  • Ma J.K.C., Drake P.M.W., Chargelegue D., Obregon P., Prada A. (2005). Antibody processing and engineering in plants, and new strategies for vaccine production. Vaccine. (23): 1814–1818.

    Article  CAS  Google Scholar 

  • Maas, J. L., Galletta, G. J., & Stoner, G. D. (1991). Ellagic acid, an anticarcinogen in fruits, especially in strawberries: a review. HortScience. 26(1), 10–14.

    Google Scholar 

  • Mason H.S., Lam D.M., Arntzen C.J. (1992). Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A. 89(24):11745–9.

    Google Scholar 

  • Mason, H.S. et al. (2002) Edible plant vaccines: applications for prophylactic and therapeutic molecular medicine. Trends Mol. Med. 8, 324–329.

    Article  CAS  Google Scholar 

  • Peter C. Sijmons, Ben M. M. Dekker, Barbara Schrammeijer, Theo C. Verwoerd, Peter J. M. van den Elzen & Andre Hoekema (1990). Production of Correctly Processed Human Serum Albumin in Transgenic Plants. Bio/Technology. (8): 217–221.

    CAS  Google Scholar 

  • Richter, L.J. et al. (2000) Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol. 18, 1167–1171.

    Article  CAS  Google Scholar 

  • Ruggiero F, Exposito J-Y, Bournat P, Gruber V, Perret S, Comte J, Olagnier B, Garrone R, Thiesen M, (2000). Triple helix assembly and processing of human collagen produced in transgenic tobacco plants. FEBS Lett. (469):132–136.

    Article  CAS  Google Scholar 

  • Sala, F. et al. (2003) Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives. Vaccine 21, 803–808.

    Article  CAS  Google Scholar 

  • Schillberg S, Fischer R and Emans N. (2003). Molecular farming of antibodies in plants. Naturwissenschften. (90): 145–155.

    Article  CAS  Google Scholar 

  • Schillberg S, Raven N, Fischer R, Twyman RM, Schiermeyer A (2013). Molecular farming of pharmaceutical proteins using plant suspension cell and tissue cultures. Curr Pharm Des, (31):5531–42.

    Article  Google Scholar 

  • Schillberg, S. et al. (2002) Antibody molecular farming in plants and plant cells. Phytochem. Rev. 1, 45–54.

    Article  CAS  Google Scholar 

  • Schunmann, P.H.D. et al. (2002) Biopharming the SimpliREDe HIV diagnostic reagent in barley, potato and tobacco. Mol. Breed. 9, 113–121.

    Article  Google Scholar 

  • Stephen P. Mayfield, Scott E. Franklin, and Richard A. Lerner (2003). Expression and assembly of a fully active antibody in algae. PNAS. (2) 438–442.

    Article  Google Scholar 

  • Stoger, E. et al. (2002a) Plantibodies: applications, advantages and bottlenecks. Curr. Opin. Biotechnol. 13, 161–166.

    Article  CAS  Google Scholar 

  • Stoger, E. et al. (2002b) Practical considerations for pharmaceutical antibody production in different crop systems. Mol. Breed. 9, 149–158.

    Article  CAS  Google Scholar 

  • Susan L Woodard , Jocelyne M Mayor, Michele R Bailey, Donna K Barker, Robert T Love, Jeffrey R Lane, Donna E Delaney, Janet M McComas-Wagner, Hanuman D Mallubhotla, Elizabeth E Hood, Lawrence J Dangott, Shane E Tichy, John A Howard. (2003a). Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem. (38): 123–30.

    Article  CAS  Google Scholar 

  • Tacket, C.O. et al. (1998b) Immunogenicity in humans of a recombinant bacterial-antigen delivered in transgenic potato. Nat.Med. 4, 607–609.

    Article  CAS  Google Scholar 

  • Tacket, C.O. et al. (2000) Human immune responses to a novel Norwalk virus vaccine delivered in transgenic potatoes. J. Infect. Dis. 182, 302–305.

    Article  CAS  Google Scholar 

  • Twyman RM, Schillberg S, Fischer R (2012). The Production of Vaccines and Therapeutic Antibodies in Plants, Molecular Farming in Plants: Recent Advances and Future Prospects. 145–159.

    Google Scholar 

  • Valkova R, Apostolova E, Naimov S (2013). Plant molecular farming: opportunities and challenges, Journal of the Serbian Chemical Society. (78): 407415.

    Article  Google Scholar 

  • Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003b). Maizederived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem (38):123–130.

    Article  CAS  Google Scholar 

  • Xiaorong Zhang, Dan W. Urry & Henry Daniell (1996). Expression of an environmentally friendly synthetic protein-based polymer gene in transgenic tobacco plants. Plant Cell Reports (16): 174–179.

    Article  Google Scholar 

  • Yu, J. and Langridge, W. (2003) Expression of rotavirus capsid protein VP6 in transgenic potato and its oral immunogenicity in mice. Transgenic Res. 12, 163–169.

    Article  CAS  Google Scholar 

  • Zhong G-Y, Peterson D, Delaney DE, Bailey M, Witcher DR, Register JC III, Bond D, Li C-P, Marshall L, Kulisek E, Ritland D, Meyer T, Hood EE, Howard JA, (1999). Commercial production of aprotinin in transgenic maize seeds. Mol Breed. (5):345–356.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Singh, A., Singh, A. (2022). Plant Molecular Farming: A Marvelous Biotechnological Approach in Agricultural Production. In: Kumar, A., Kumar, P., Singh, S.S., Trisasongko, B.H., Rani, M. (eds) Agriculture, Livestock Production and Aquaculture. Springer, Cham. https://doi.org/10.1007/978-3-030-93262-6_7

Download citation

Publish with us

Policies and ethics